Semester: 1	ST		Subj	ect Na	me: E	Ingine	ering	Mathe	ematic	es-I		_	ct Code FBS101			
			l				C	ourse	Outco	mes		1				
CO1	Identi	ify, for	mulat	e and	solve l	Engine	ering	proble	ms.							
CO2	Acqu	ire kno	wledg	ge abo	ut Adv	vance (Calcul	us.								
CO3	Acqu	ire kno	owledg	ge abo	ut Seri	ies sol	ution o	of Diff	erentia	ıl equat	ions.					
CO4	Acqu	ire kno	owledg	ge abo	ut Gar	nma a	nd Bet	a func	tion.							
CO5	Acqu	equire knowledge about Laplace transform and apply it to solve IVP. CO-PO Mapping CO-PSO Mappin														
		CO-PO Mapping CO-PSO Mappin														
Sl. No	PO1															
CO1	3	3	2	2	×	×	×	×	×	×	×	×	2	3	×	
CO2	2	2	2	2	×	×	×	×	×	×	×	×	2	3	×	
CO3	3	3	3	2	×	×	×	×	×	×	×	×	3	2	×	
CO4	2	2	2	2	×	×	×	×	×	×	×	×	1	3	×	
CO5	2	3	3	3	×	×	×	×	×	×	×	×	2	2	×	
Average	2.4	2.6	2.4	2.2									2	2.6		
'3'High	L		'2'	Mode	erate		I	'1' Lo	ow			'-' N	o Corre	lation		
Overall CO	Attaiı	nment										2.52				
PO Attainment		2.18	2.01	1.84									1.68	2.18		

Semester: 15	ST		Subj	ect Na	me: E	NGINE	ERING	CHEM	IISTRY			_	t Code BS103			
			I				Co	ourse	Outco	mes		L				
CO1		ify var is batte		uels ba	ased or	n com	bustion	n parar	neters	and un	derstan	d the w	orking p	principle	e of	
CO2		dersta ndition		e micro	ostruct	ture of	a give	en alloy	y syste	ms and	eutect	ic syste	ms und	er a give	en set	
CO3		e the k ment f		_		ocher	nistry a	and co	rrosio	n sciend	ce in pro	eventin	g engine	eering		
		oply the concept of molecular spectroscopy to analyse organic compounds using ectrophotometer. scuss the benefits and applications of Nano materials.														
CO5	Discus	scuss the benefits and applications of Nano materials. CO-PO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	3	2	2	-	-	-	2	2	3	3	-	
CO2	3	3	3	3	3	2	1	-	-	-	2	2	3	3	-	
CO3	2	2	2	2	1	-	-	-	-	-	1	1	2	3	-	
CO4	3	3	3	2	2	1	1	-	-	-	1	1	2	2	-	
CO5	3	2	2	1	-	-	-	-	-	-	-	-	1	1	-	
Average	2.80	2.60	2.60	2.20	2.25	1.67	1.33	-	-	-	1.50	1.50	2.20	2.40	-	
'3'High		•	'2'	Mode	rate		•	'1' Lo	ow			'-' No	o Corre	lation		
Overall CO	Attair	nment										2.46				
PO Attainment	2.36	2.19	2.19	1.86	1.90	1.41	1.12	-	-	-	1.27	1.27	1.86	2.02	-	

Semester: 15	ST			ect Na INEE			ELE	CTRO	NICS			•	ct Code FES102			
							C	ourse	Outco	mes		1				
CO1	Unde	rstand	the w	orking	princ	iples a	nd app	olicatio	ons of	semico	nductor	diodes	•			
CO2	Analy	se the	opera	ation, c	configu	ıration	ıs, and	biasin	g of B	JTs.						
CO3	Analy	se the	chara	cterist	ics of	FETs	and fee	edback	conce	epts in a	amplific	ers and	oscillat	ors.		
CO4	Unde	rstand	the cl	naracte	ristics	and a	pplicat	tions o	f oper	ational	amplifi	ers.				
CO5	Desig	esign and simplify digital circuits using Boolean algebra and logic gates. CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														
CO1	3	2	1	1	1	1	1	1	1	1	1	2	3	1	1	
CO2	3	3	2	2	2	1	1	1	2	1	1	2	3	2	2	
CO3	3	3	2	2	2	1	1	1	2	1	1	2	3	2	2	
CO4	3	2	2	2	2	1	1	1	2	1	1	2	3	2	2	
CO5	3	3	3	2	3	1	1	1	2	2	2	2	3	2	2	
Average	3	2.6	2	1.8	2	1	1	1	1.8	1.2	1.2	2	3	1.8	1.8	
'3'High		I	'2'	Mode	erate	I	I	'1' Lo	OW		I	'-' N	o Corre	lation		
Overall CO	Attaiı	nment	:									2.52				
PO Attainment	2.52	2.18	1.68	1.51	1.68	0.84	0.84	1.96	1.68	1.01	1.01	1.68	2.52	1.51	1.51	

Semester:	1ST		Subj	ect Na	me: B	BASIC	S OF	CIVII	L ENC	GINEE	RING	_	ct Code FES104			
			<u> </u>				C	ourse	Outco	omes		I				
CO1	Able	to und	erstan	d the l	oasics	of civi	l engi	neering	g and f	fundam	ental as	pects of	f buildii	ng.		
CO2	Able	to get	the br	ief ove	erview	of ger	neral a	spect o	of buil	ding ma	aterial.					
CO3	Able	e to get brief idea about transportation modes and planning. e to get brief idea about drinking water standards and water treatment plant.														
CO4	Able															
CO5	Able	Able to get brief idea about drinking water standards and water treatment plant. Able to get brief idea about irrigation network system.														
					(CO-PC) Map	ping					CO-PS	O Map	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	1	1	2	-	-	-	1	2	1	1	2	-	2	
CO2	3	1	1	1	3	-	-	-	1	1	1	3	2	-	3	
CO3	3	2	1	1	2	-	-	-	2	2	1	2	2	-	1	
CO4	3	2	2	2	2	-	-	-	1	2	1	3	2	-	2	
CO5	3	2	1	2	3	-	-	-	2	2	1	3	3	-	2	

Average	3	1.8	1.2	1.4	2.4	-	-	-	1.4	1.8	1	2.4	2.2	-	2
'3'High			'2'	Mode	rate			'1' Lo	ow			'-' No	o Corre	lation	
Overall CO	Attair	ment								2.23					
PO Attainment	2.23	1.34	0.89	1.04	1.78	-	-	-	1.04	1.34	0.74	1.78	1.64	-	1.49

Semester:	1ST		Subj	ect Na	me: (Comn	nunic	ative	Engl	ish		Subjec	ct Code	: 20BTT	THS101
							Co	ourse	Outco	mes					
CO1	Enhai	nce Ve	rbal a	nd No	n-Verl	oal Co	mmun	ication	n Skill	S					
CO2	Impro	ve Te	chnica	al and	Busine	ess Wr	iting S	Skills							
CO3	Devel	velop Listening and Comprehension Abilities													
CO4	Streng	rengthen Public Speaking and Presentation Skills													
CO5	Enhai	nce Wo	orkpla	ce and	Inter	person	al Con	nmuni	cation						
					(CO-PC) Map	ping					CO-PS	O Mapı	oing
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1	1	1	-	2	2	3	-	3	1	1	1

CO2	2	1	1	1	1	1	-	2	3	3	-	3	2	1	1
CO3	2	1	2	1	2	1	-	2	2	3	-	3	2	1	2
CO4	2	1	1	1	1	1	-	2	2	3	-	3	1	1	1
CO5	1	1	1	1	1	1	-	2	3	3	-	3	1	1	1
Average	1.8	1	1.2	1	1.2	1	-	2	2.4	3	-	3	1.4	1	1.2
'3'High		I	'2'	Mode	erate	-1		'1' Lo	ow			'-' No	o Corre	lation	
Overall CO	Attaiı	nment										2.30			
PO	1.38	0.76	0.92	0.76	0.92	0.76	-	1.53	1.84	2.3	-	2.3	1.07	0.76	0.92
Attainment															

Semester	:: 1ST	Subject Name: Engineering Chemistry Laboratory	Subject Code:20BTPBS102
		Course Outcomes	
CO1		apply basic techniques used in chemistry laboratory for surification	mall/large scale water
CO2	Be able to	estimate the ions/metal ions present in domestic/industry v	waste water.
СОЗ	Utilize the	fundamental laboratory techniques for analyses such as ti-	itrations, separation /purification
CO4	Test the q	uality of an oil/fat by measuring its iodine or acid value by	means of amount of unsaturation

	for va	rious i	ndust	rial us	е.										
CO5		y quali nability							ity or i	flash po	int whi	ch gives	their n	ature &	
					(CO-PO) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	-	-	2	2	-	2	2	2	1	2	3	-
CO2	2	2	1	3	-										
CO3	1	1	1	-	1	2	1	-							
CO4	2	2	2	-	-	2	2	-	2	2	2	2	2	1	-
CO5	1	1	1	-	-	1	3	-	2	2	1	2	2	1	-
Average	1.6	1.4	1.4	-	-	1.4	2.4	-	2	1.6	1.6	1.4	1.8	1.8	-
'3'High			'2'	Mode	erate			'1' L	ow			'-' N	o Corre	lation	
Overall CO	Attaiı	nment										2.42			
PO	1.29	1.13	1.13	-	-	1.13	1.94	-	1.61	1.29	1.29	1.13	1.45	1.45	-
Attainment															

Semester: 1ST	Subject Name: BASIC ELECTRONICS ENGINEERING LAB	Subject Code: 20BTPES102
	Course Outcomes	

CO1	Famil	iarize v	with v	arious	electro	onic co	ompor	ients, i	neasu	ring ins	trumen	ts				
CO2	Acqui	re kno	wledg	ge of ch	naract	eristics	of did	odes a	nd des	ign, tes	ting					
CO3	1 '	re kno stors i	_				of tra	ınsisto	rs and	design,	testing	g & imp	lementa	ation of		
CO4		op und				tal log	ic gate	s and	design	& test	digital	circuits	for vari	ous		
CO5		rain understanding of operational amplifiers (Op-Amp) and design & testing of electronic circuits or various applications using Op-Amp. CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														
CO1	3															
CO2	3	3	3	2	2	0	0	0	0	1	0	2	3	3	2	
CO3	3	2	2	2	3	0	0	0	0	1	0	2	2	3	3	
CO4	3	2	3	3	3	0	0	0	2	2	0	2	2	2	3	
CO5	2	1	1	1	2	0	0	1	3	3	1	2	1	2	3	
Average	2.8	2	2	2	2.4	0	0	0.2	1	1.6	0.2	2	2.2	2.4	2.4	
'3'High			'2'	Mode	erate			'1' L	DW			'-' N	o Corre	lation		
Overall CO	Attair	nment										2.54				
PO Attainment		1.69	1.69	1.69	2.03	-	_	0.16	0.84	1.35	0.16	1.69	1.86	2.03	2.03	

Semester: 1	ST		Subj LAB		me: B	BASIC	S OF	CIVII	L ENG	SINEE	RING	Subject 20BTF	t Code PES104			
							Co	ourse	Outco	mes		I				
CO1	Perfo	rm Ma	terial	Testin	g and	Analy	sis.									
CO2	Evalu	ate Ce	ment	and Co	oncret	e Prop	erties.									
CO3	Analy	ze Me	chani	cal Pro	opertie	s of R	einfor	cemen	t.							
CO4	Apply	Surve	eying	Techn	iques	for Lir	near an	d Ang	ular N	1easure	ment.					
CO5	Demo	emonstrate Competence in Advanced Surveying Instruments. CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	1	2	1	2	3	-	-	1	-	-	2	2	-	1	
CO2	3	1	2	1	2	3	-	-	1	1	-	1	2	-	1	
CO3	3	1	2	1	2	3	-	-	1	-	-	2	3	-	1	
CO4	3	2	2	1	2	3	-	-	1	1	-	2	2	-	2	
CO5	3	1	3	1	2	3	-	-	1	-	-	2	2	-	2	
Average	3	1.2	2.2	1	2	3	-	-	1	0.4	-	1.8	2.2	-	1.4	
'3'High		1	'2'	Mode	erate	1	l	'1' L	ow	<u> </u>	I	'-' No	o Corre	lation		
Overall CO	Attaiı	nment										2.21				
PO Attainment	2.21	0.88	1.62	0.74	1.47	2.21	-	-	0.74	0.3	-	1.33	1.62	-	1.03	

Semester: 15	ST		Subj	ect Na	me: E	NGINE	ERING	GRAP	HICS &	DESIG	N LAB	Subjec	ct Code	: 20BTI	PES105	
							Co	ourse	Outco	mes						
CO1	Prepa	re and	under	rstand	drawii	ngs.										
CO2	Use tl	ne prin	ciples	of ort	hogra	phic pi	rojection	ons.								
CO3	-	idying nat wil								able to	visual	ize thre	e dimer	nsional o	bjects	
CO4	Desig	n and	fabric	ate sui	rfaces	of diff	erent s	shapes								
CO5	Repre	sent th	ne obj	ects in	three	dimen	sional	appea	rances							
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	O1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														
CO1	3	1	2	1	2	3	-	-	1	-	-	2	2	-	1	
CO2	3	1	2	1	2	3	-	-	1	1	-	1	2	-	1	
CO3	3	1	2	1	1	3	-	-	1	-	-	2	3	-	1	
CO4	3	2	2	1	1	3	-	-	1	1	-	2	2	-	2	
CO5	3	1	3	1	1	3	-	-	1	-	-	2	2	-	2	
Average	3	1.2	2.2	1	1.4	3	-	-	1	0.4	-	1.8	2.2	-	1.4	
'3'High			'2'	Mode	erate			'1' Lo	DW			'-' N	o Corre	lation		
Overall CO	Attaiı	nment										2.2				
PO Attainment	2.22	0.89	1.63	0.74	1.04	2.22	-	-	0.74	0.3	-	1.33	1.63	-	1.04	

Semester: 1	ST		Subj	ect Na	me: E	Englis	h La	ngua	ge La	ıb			t Code PHS101			
			I				Co	ourse	Outco	mes		L				
CO1			_		ds of E p sente	_	and u	ising tl	nem in	the rig	ht conto	ext. Wr	ite para	graphs,	stories	
CO2	Lister	i, spea	k, rea	d & w:	rite the	e soun	ds of E	English	using	correct	t stress,	tone an	d rhyth	ım		
CO3						_	•			roduction point I	,	U 1	estions a	and		
CO4	Learn	Learning and building soft skills for improving professionalism among students. The skills of critical appreciation of written content and draw conclusions on the given text and the skills of critical appreciation of written content and draw conclusions on the given text and the skills of critical appreciation of written content and draw conclusions on the given text and the skills of critical appreciation of written content and draw conclusions on the given text and the skills of critical appreciation of written content and draw conclusions on the given text and the skills of critical appreciation of written content and draw conclusions on the given text and the skills of critical appreciation of written content and draw conclusions on the given text and the skills of critical appreciation of written content and draw conclusions on the given text and the skills of critical appreciation of written content and draw conclusions on the given text and the skills of critical appreciation of written content and draw conclusions on the given text and the skills of critical appreciation of written content and draw conclusions on the given text are skills of critical appreciations.														
CO5	Imbib															
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	0	0	0	0	0	2	2	2	3	3	3	2	0	0	2	
CO2	0	0	0	0	0	2	2	2	3	3	3	2	0	0	2	
CO3	0	0	0	0	0	2	2	2	3	3	3	3	0	0	2	
CO4	0	0	0	0	0	2	2	2	3	3	3	2	0	0	2	
CO5	0	0	0	0	0	2	2	2	3	3	3	2	0	0	2	
Average	0	0	0	0	0	2	2	2	3	3	3	2.2	0	0	2	
'3'High	<u>I</u>	I	'2'	Mode	erate	I	1	'1' Lo	ow	1	1	'-' No	o Corre	lation		
Overall CO	Attaiı	nment										2.20				

PO															
Attainment	0.00	0.00	0.00	0.00	0.00	1.47	1.47	1.47	2.20	2.20	2.20	1.61	0.00	0.00	1.47

Semester:	2ND		Subj II	ect Na	me: E	ENGIN	NEER	ING N	1ATH	IEMAT	TCS -	•	ct Code TBS204			
							C	ourse	Outco	omes						
CO1	Apply	the k	nowle	edge of	f Math	ematic	es in P	hysica	l scien	ces and	Engine	eering.				
CO2	Acqu	ire kno	wled	ge of I	Double	and T	riple I	Integra	l and t	their ap	plicatio	ns in en	gineeri	ng subje	ects.	
CO3	Acqu	ire kno	wled	ge abo	ut Fou	ırier se	ries ar	nd Fou	rier tra	ansform	l.					
CO4	Apply	/ Knov	wledge	e vecto	or calc	ulus ir	engin	eering	and p	hysical	science	es.				
CO5	-	pply Knowledge vector calculus in engineering and physical sciences. cquire knowledge of Matrix Algebra, Determinants and their applications in engineering abjects.														
					(CO-PC) Map	ping					CO-I	PSO Ma	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	×	×	×	×	×	×	×	×	3	2	×	
CO2	2	2	2	2	×	×	×	×	×	×	×	×	1	1	×	
CO3	2	2	2	2	×	×	×	×	×	×	×	×	1	1	×	
CO4	2	2	2	2	×	×	×	×	×	×	×	×	1	1	×	
CO5	3	3	3	2	×	×	×	×	×	×	×	×	3	2	×	

Average	2.4	2.4	2.4	2	-	-	-	-	-	-	-	-	1.8	1.4	-
'3'High			'2'	Mode	rate			'1' Lo)W			'-' No	o Corre	lation	
Overall CO	Attair	ment									2.50				
PO Attainment	2	2	2	1.66									1.5	1.16	

Semester: 2	2ND		Subj	ect Na	me: E	NGINE	ERING	PHYSI	CS			Subjec	ct Code	: 20BTT	ΓBS202
							C	ourse	Outco	mes					
CO1					-	-		-		_	multiple sition pri		ory syste	ems and	complex
CO2						_	_				n differe	-	imental	demonst	ration of
CO3		clarity teristics		_	out cr	ystal st	tructure	es and	crystal	lography	to lear	n about	t differe	nt matei	rials and
CO4					•						op multip unication			lication.	Principle
CO5					_	_		_			amiliarize ons & qua				in vector
					(CO-PC) Map	ping					CO-PS	O Mapı	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	3	1	2					3			

CO2	3	2	1	3	2	2	1				2			
CO3	2	2	2	2	3	1	1				1			
CO4	3	2	1	2	1	2	1				2			
CO5	2	1	2	2	2	1	1				3			
Average	2.6	2	1.6	2.4	2.2	1.4	1.2				2.2	-	-	-
'3'High			'2'	Mode	rate			'1' Lo	ow		'-' No) Corre	lation	
Overall CO	Attain	ment									2.52			
PO	2.18	1.68	1.34	2.01	2.2	1.17	1.008				1.84			
Attainment														

Semester: 2	2ND	Subject Name: Basic Electrical Engineering	Subject Code: 20BTTES201
		Course Outcomes	
CO1	Implement p	rinciples of DC network, theorems and fundamental concept	s of electric circuit.
CO2	Analyze the	concept of single phase AC circuit, Phasor relationship and co	rrelate AC power.
CO3	1	implement the concept of three phase power generation, the power and its measurement.	ree phase inter connections,
CO4	,	ficance of magnetic circuits, applications, importance of mag inciples and applications of power transformers and auto tra	

CO5	Apply	basic p	rincip	les of D	C mac	hines a	nd the	ir appli	cation	s, conce	pt of Inc	duction i	machine	s.	
					(CO-PC) Map	ping					CO-PS	O Mapı	oing
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	3	2	3			-	-	-		1	3	2	-
CO2	3	2	1	3	2			-	-	-		2	3	3	-
CO3	2	1	3	2	3			-	-	-		1	3	2	-
CO4	3	2	1	2	3			-	-	-		2	3	3	-
CO5	2	1	2	2	3			-	-	-		1	2	2	-
Average	2.40	1.40	2.00	2.20	2.80			-	-	-		1.40	2.80	2.40	
'3'High			'2'	Mode	erate			'1' Lo)W			'-' N	o Corre	lation	
Overall CO	Attair	nment										2.52			
PO	2.01	1.17	1.68	1.84	2.35							1.17	235	2.01	
Attainment															

Semester: 21		· · ·	Subject Code: 20BTTES203
		Course Outcomes	
CO1	To be able to	understand fundamentals statics, friction, truss, CG and MI	

CO2	To be	able to	princ	iple of	dynam	ics, wo	rk, ene	ergy, im	pact, r	otationa	al and cu	ırvilinea	r motio	า.		
CO3		able to						-	mics,:	I.C. Engi	nes, Ref	rigerato	ors and S	team		
CO4		able to		rstand	the ap	olicatio	n of So	crew Th	reads,	Nuts, Bo	olts & Ri	ivets, Cli	utch and	l Gear Bo	ox and	
CO5		able to metal			Found	ry Prac	tices- F	attern	, Moul	d & Cast	ing, Me	chanical	workin	g of meta	als -	
		CO-PO Mapping CO-PSO Mapping PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
Sl. No	PO1															
CO1	3															
CO2	2															
CO3	2	3	3	2	3	-	-	-	-	-	-	3	3	3	2	
CO4	2	2	3	2	3	-	-	-	-	-	-	3	3	2	2	
CO5	2	2	2	2	2	-	-	-	-	-	-	3	2	2	2	
Average	2.2	2.6	2.8	2	2.8	-	-	-	-	-	-	3	2.8	2.6	2.2	
'3'High	1	<u> </u>	'2'	' Mode	erate			'1' Lo)W			'-' N	o Corre	lation		
Overall CO	Attair	nment										2.29				
PO Attainment	1.68	1.984	2.13	1.526	2.137	_	_	-	_	_	_	2.29	2.137	1.984	1.68	

Semester: 21	ND		Subj	ect Na	me: E	ENGIN	NEER)	NG M	1ECH	ANICS	5	•	ct Code TES205			
			ı				C	ourse	Outco	mes		I				
CO1	To ana	alyze th	ne forc	es and	mome	nts de	velope	d in str	uctural	membe	ers using	the pri	nciple of	f equilib	rium	
CO2	To inti	oduce	the te	chniqu	ies for	analyzi	ng inte	rnal m	ember	forces a	cting or	n trusses	and fra	mes		
CO3	To sol	ve basi	c prob	lems o	n centi	roid, m	oment	s of ine	ertia, aı	nd the p	rinciple	of virtua	al work			
CO4	То арр	oly Nev	vton's	law, D'	alemb	ert's pr	inciple	for red	tilinea	r and cu	rvilinea	r motior	1.			
CO5	То арр	To apply the kinematics of rotation, Equation of motion of a rotating body														
					(CO-PC) Map	ping					CO-PS	O Map	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	3	2	2	-	-	-	2	2	3	3	-	
CO2	3	3	3	3	3	2	1	-	-	-	2	2	3	3	-	
CO3	2	2	2	2	1	-	-	-	-	-	1	1	2	3	-	
CO4	3	3	3	2	2	1	1	-	-	-	1	1	2	2	-	
CO5	3	2	2	1	-	-	-	-	-	-	-	-	1	1	-	
Average	2.80	2.60	2.60	2.20	2.25	1.67	1.33	-	-	-	1.50	1.50	2.20	2.40	-	
'3'High	1	I	'2'	Mode	erate		1	'1' Lo	OW	I		'-' N	o Corre	lation		
Overall CO	Attair	nment										2.53				
PO Attainment	2.36	2.19	2.19	1.86	1.90	1.41	1.12	-	-	-	1.27	1.27	1.86	2.02	-	

Semester: 2	ND		Subj using		me: P	rogra	mmin	g for p	proble	em solvi	ing	_	ct Code FES105		
							C	ourse	Outco	mes					
CO1	Under	rstand,	transl	ate and	d formu	ılate th	e algo	rithms	to pro	grams (i	n C lang	uage).			
CO2	Devel	op and	built l	ogic to	solve p	orobler	ns thro	ough ap	plying	the fun	dament	als.			
CO3	Apply	modul	ar pro	gramm	ing ap	proach	and re	cursion	n mech	anism t	o solve t	the com	plex pro	blem.	
CO4	Under	rstand	the me	emory _l	progra	m usinį	g point	er for p	robler	n solvinį	g.				
CO5	Implement user defined data types and file concepts to develop various programs.														
					(CO-PC) Map	ping					CO-PS	O Map	ping
Sl. No	o PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO													PSO2	PSO3
CO1	3	3	2	2	-	-	-	-	-	-	-	3	3	2	2
CO2	3	3	2	2	3	-	-	-	-	-	-	3	3	3	2
CO3	3	3	3	2	3	-	-	-	-	-	-	3	3	2	2
CO4	3	3	3	2	3	-	-	-	-	-	-	3	2	2	2
CO5	2	3	3	2	2	-	-	-	-	-	-	3	2	3	2
Average	2.8	3	2.6	2	2.75	-	-	-	-	-	-	3	2.6	2.4	2
'3'High			'2'	Mode	erate			'1' L	OW	1	1	'-' N	o Corre	lation	
Overall CO	Attaiı	nment										2.54			
PO Attainment														1.69	

Semester: 2	ND		Subje SKILL		me: B	USINE	SS COI	MMUN	ICATIO	ON AND	LIFE	Subjec	ct Code	: 20BT	ΓHS202
							C	ourse	Outco	mes					
CO1	Use E	English	Lang	uage e	effectiv	vely in	spoke	en and	writte	n forms	,				
CO2	Comp	rehend	d the g	given t	exts a	nd resp	ond a	ppropi	riately	•					
CO3	Comr	nunica	ite cor	nfident	ly in v	arious	conte	xts and	d diffe	rent cul	ltures.				
CO4	_	ire bas ing sk	-	ficiend	cy in E	English	inclu	ding re	eading	and list	tening o	comprel	nension	, writing	g and
CO5		Understand various principles of communication, its various stages and the role of audience and purpose, deal with the barriers that affect communication in a professional set- up.													
					(CO-PO) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2
CO2	-	-	-	-	-	2	1	3	3	3	2	3	-	-	2
CO3	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2
CO4	-	-	-	-	-	-	2	2	3	3	2	2	-	-	2
CO5	-	-	-	-	-	-	2	3	3	3	2	2	-	-	2
Average	-	-	-	-	-	2.00	1.80	2.80	3.00	3.00	2.00	2.60	-	-	2.00
'3'High		l	'2'	Mode	erate	l		'1' Lo	DW	1	l	'-' N	o Corre	lation	l
Overall CO	Attair	nment										2.40			
PO	-	-	-	_	_	1.60	1.44	2.24	2.40	2.40	1.60	2.08	-	-	1.60

Attainment								
Attamment								

Semester: 2	PND		Subj	ect Na	me: E	NGINE	ERING	PHYSI	CS LAE	3		Subject 20BTF	t Code PBS201	•	
			<u> </u>				C	ourse	Outco	mes					
CO1	Knov	v the ac	ccurac	y and p	recisio	n in m	easure	ment							
CO2		how to			oung's	modul	lus, rig	idity m	odulus	of a wir	e and to	underst	and the	concept	of
CO3		Determine the surface tension of liquid and to understand fluid properties. To experiment with wave nature of light in diffraction through a grating and Newton's rings. To know the variation of I ~V of PN junction and BJT.													
CO5	To k	now the	e varia	tion of	I~V	of PN j	unctio	n and B	JT.						
					(CO-PC) Map	ping					CO-PS	О Марр	oing
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	0	0	0	0	0	0			
CO2	1	1	1	2	1	1	0	0	0	0	0	0			
CO3	2	2	2	2	1	0	0	0	0	0	0	0			
CO4	1	1	1	2	1	1	0	0	0	0	0	0			

CO5	3	3	2	2	0	0	0	0	0	0	0	0							
Average	1.6	1.6	1.4	1.8	0.8	0.6	0	0	0	0	0	0	-	-	-				
'3'High			'2'	Mode	erate			'1' Lo	ow		'-' No Correlation								
Overall CO	Attair	ment										2.4							
PO	1.28	1.28	1.12	1.44	0.64	0.48													
Attainment																			

Semester	: 2ND	Subject Name: BASIC ELECTRICAL ENGINEERING LAB	Subject Code: 20BTPES201
		Course Outcomes	
CO1		damental electrical theorems (Norton's, Thevenin's, and Super circuits to solve practical problems.	position theorems) and analyze
CO2		ne V-I characteristics of incandescent lamps, time-fusing curren asurements in three-phase systems using the two-wattmeter r	·
CO3		test, and measure the performance of electrical devices such eters, and transformers under no-load conditions.	as fluorescent lamps, single-phase
CO4		eries R-L-C circuits excited by AC supply to determine current, vate the results experimentally.	oltage, power, and power factor,
CO5		ate knowledge of house wiring, electrical safety rules, and grounent of earth resistance using a megger.	unding techniques, including the

					(CO-PC) Map	ping					CO-PS	O Mapı	oing
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	2	2	-	3	2	-	2	3	3	2
CO2	3	2	2	2	2	2	2	-	3	2	-	2	3	2	2
CO3	2	1	1	1	2	1	1	-	3	2	-	1	3	2	1
CO4	1	1	1	1	1	1	1	-	2	1	-	1	3	2	1
CO5	1	1	1	1	1	1	1	-	2	1	-	1	3	2	1
Average	2	1.4	1.4	1.4	1.6	1.4	1.4	-	2.6	1.6	-	1.4	3	2.2	1.4
'3'High			'2'	Mode	rate			'1' Lo	DW			'-' N	o Corre	lation	
Overall CO	Attair	ment										1.96			
PO	1.30	0.91	0.91	0.91	1.04	0.91	0.91		1.69	1.04		0.91	1.96	1.43	0.91
Attainment															

Semester	r: 2ND	Subject Name: BASICS OF MECHANICA ENGINEERING LAB	L Subject Code: 20BTPES203
		Course Outcomes	5
CO1	To be ab	ole to understand different components and its function	of an automobile.
CO2	To be ab	ole to understand different types of boiler and its consti	ruction
CO3	To be ab	ole to understand the principle of vapour compression r	efrigeration system

CO4	To be	able to	unde	rstand	the dif	ferent	types c	of hydra	aulic tu	rbine ar	nd pump	and its	constru	ction.	
CO5	To be	able to	unde	rstand	princip	le and	workin	g of di	fferent	types o	f gear, c	lutch			
					(CO-PC) Map	ping					CO-PS	O Mapı	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	-	-	-	3	3	2	-	3	2	-
CO2	2	2	2	2	2	-	-	-	3	3	2	-	3	2	-
CO3	2	1	2	1	1	-	-	-	3	3	2	-	2	2	-
CO4	1	1	1	1	1	-	-	-	3	2	1	-	2	1	-
CO5	1	1	1	1	1	-	-	-	2	2	1	-	2	1	-
Average	1.6	1.4	1.6	1.4	1.4	-	-	-	2.8	2.6	1.6	-	2.4	1.6	-
'3'High		I	'2'	Mode	erate	I		'1' Lo	OW	L		'-' N	o Corre	lation	
Overall CO	Attair	nment										2.32			
PO	1.237	1.082	1.23	1.082	1.082	-	-	_	2.165	2.010	1.237	-	1.856	1.237	-
Attainment			7												

Semester: 2ND	Subject Name: WORKSHOP PRACTICE	Subject Code:
		20BTPES206

							C	ourse	Outco	mes					
CO1	To be	able to	use v	arious	fitting	tools a	nd able	to per	form f	itting op	eration.				
CO2	To be	able to	unde	rstand	princip	le of g	as welc	ding an	d able	to perfo	rm gas v	welding	operatio	on.	
CO3	To be	able to	unde	rstand	princip	le of a	rc weld	ling an	d able 1	to perfo	rm arc v	velding o	operatio	n.	
CO4	To be using		unde	rstand	differe	nt part	s of a l	athe ar	nd able	to perfo	orm turr	ning, fac	ing, thre	eading, t	apering
CO5	To be able to understand different parts of a shaping and milling machine and able to perform shaping a milling operation. CO-PO Mapping CO-PSO Mapping														oing and
															ping
Sl. No	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO2 PSO3 PSO4 PSO5 PS														PSO3
CO1	2	2	3	2	3	2	2	-	3	3	-	3	3	2	3
CO2	2	2	3	2	2	2	2	-	3	3	-	3	3	2	3
CO3	2	2	2	1	2	2	1	-	3	3	-	3	2	2	3
CO4	2	2	3	2	2	1	2	-	3	2	-	2	2	1	3
CO5	2	1	2	1	3	1	1	-	2	2	-	2	2	1	3
Average	2	1.8	2.6	1.6	2.4	1.6	1.6	-	2.8	2.6	-	2.6	2.4	1.6	3
'3'High		1	'2'	Mode	erate			'1' L	ow	I	<u> </u>	'-' N	o Corre	lation	l
Overall CO	Attaiı	nment										2.42			
PO Attainment		1.45	2.09	1.29	1.93	1.29	1.29	-	2.25	2.09	-	2.09	1.93	1.29	2.42

Semester: 2	ND			ect Na G C LA		ROGR	IIMMA	NG FOI	R PROE	BLEM SC	DLVING	Subjec	ct Code	: 20BTI	PES207
			<u> </u>				C	ourse	Outco	omes		1			
CO1		op the nts, and		•	rite, c	ompile	, exec	ute, ar	nd deb	ug C pr	ograms	using (operato	rs, cond	i
CO2	Perfor function	•	ration	s on ar	rays, st	rings, a	and ma	trices,	includi	ng searc	ching, sc	orting, a	nd mani	pulation	using
CO3	Apply	the cor	ncepts	of use	r-defin	ed fun	ctions	and red	cursion	to solve	comple	ex progr	amming	probler	ns
CO4	-	Implement advanced programming constructs such as structures, dynamic memory management, and linked lists													
CO5	Demonstrate file handling, command-line arguments, and pre-processor directives for efficient progreexecution.														gram
					(CO-PO) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	2	3	-	-	-	3	3	-	2	3	3	3
CO2	2	2	-	2	3	-	-	-	3	3	-	2	3	3	3
CO3	2	1	-	2	3	-	-	-	3	3	-	2	3	2	3
CO4	1	1	-	1	3	-	-	-	2	3	-	2	3	2	3
CO5	1	1	-	1	2	-	-	-	2	2	-	2	3	2	2
Average	1.6	1.4	-	1.6	2.8	-	-	-	2.6	2.8	-	2	3	2.4	2.8
'3'High	1	1	'2'	Mode	erate	1	1	'1' L	ow	1	ı	'-' N	o Corre	lation	
Overall CO	Attair	nment										2.50			
PO Attainmen		1.16	-	1.33	2.33				2.16	2.33		1.66	2.5	2	2.33

Semester: 31	RD		Subj	ect Na	me: E	ngin	eerir	ng Ma	ather	natics	i III	_	ct Code TBS305			
							C	ourse	Outco	mes						
CO1				•	_							s related	_	ineering tion.	ζ,	
CO2	Know	about	inter	polatic	on. Enl	nance	this id	ea tow	ards n	umerica	al integ	ration.				
CO3	Solve	Initial	value	e Probl	lem an	d Bou	ndary	value	proble	m using	g single	step an	d multi	step me	thod.	
CO4	-			_	_				rando	m varia	ble , pr	obabilit	y distri	butions,		
CO5	-	pectation, variance and standard deviation. quire knowledge about point estimation, interval of estimation, testing hypothesis, regression lysis and statistical quality control. CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	3	3	3	×	×	×	×	×	×	×	×	2	2	×	
CO2	2	2	2	2	×	×	×	×	×	×	×	×	1	2	×	
CO3	2	2	2	2	×	×	×	×	×	×	×	×	2	2	×	
CO4	3	3	2	2	×	×	×	×	×	×	×	×	2	2	×	
CO5	2	2	2	2	×	×	×	×	×	×	×	×	2	2	×	
Average	2.4	2.4	2.2	2.2	-	-	-	-	-	-	-	-	1.8	2		
'3'High			'2'	Mode	erate		I	'1' L	ow	l	l	'-' N	o Corre	lation		
Overall CO	Attair	ment										2.50				
PO Attainment	2	2	1.83	1.83									1.5	1.66		

Semester: 3	RD		Subj	ect Na	me: D	ata st	ructui	re Usii	ng C			Subject 20BTT			
							Co	ourse	Outco	mes					
CO1	Analys matrix	•	orman	ce of al	lgorithi	ns and	implei	ment va	arious o	operation	ns on arr	ay and s	sparse		
CO2	Apply	the ba	sic ope	erations	of sta	cks and	d queue	es to so	lve rea	l world _l	problem	S.			
CO3	Implei	nent di	fferen	t types	of link	ed list	operati	ons an	d their	applicat	ions.				
CO4	Repres	sent da	ta usin	g trees	& graj	ohs to u	ise the	m in va	rious r	eal life a	pplicati	ons.			
CO5	Analys	alyse various sorting algorithms and explore different hashing techniques. CO-PSO Manning													
		CO-PO Mapping CO-PSO Mapping													
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	1	1	1	1	1	1	3	2	2	3
CO2	3	2	3	2	3	1	1	1	1	1	1	3	3	3	3
CO3	3	2	3	3	3	1	1	1	1	1	1	3	3	3	3
CO4	3	3	3	3	3	1	1	1	1	1	1	3	3	3	3
CO5	3	2	3	3	2	1	1	1	1	1	1	3	3	3	3
Average	3	2.4	3	2.6	2.6	1	1	1	1	1	1	3	2.8	2.8	3
'3'High	<u> </u>		'2'	Mode	rate			'1' Lo	ow			'-' No	o Corre	lation	
Overall CO	Attair	ment										2.50			

PO	2.5	2	2.5	2.16	2.16	0.833	0.833	0.833	0.833	0.833	0.833	2.5	2.33	2.33	2.5
Attainment															

Semester: 3	BRD		Subj	ect Na	me: C)rgani	sation	al Bel	naviou	r		•	ct Code THS3O		
							Co	ourse	Outco	mes					
CO1		onstrat ehavio			•		-	of orga	anizatio	onal beh	avior to	underst	tand		
CO2		onstrat agemer			-			·		s associa	ated with	า			
СОЗ		ze the c	·	exities a	associa	ted wit	th man	ageme	nt of th	ne group	behavio	or in the			
CO4		onstrat vation l			_					e in und	lerstand	ing the			
CO5	Analy	yze the	variou	ıs stres	sors ar	nd iden	tifying	the va	rious w	ays to m	nanage i	t.			
					(CO-PO) Map	ping					CO-PS	O Mapı	oing
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	2	1	2	2	2	1	-	-	1

CO2	-	-	-	-	-	-	2	2	2	1	1	1	-	-	1
CO3	-	-	-	-	-	-	1	2	1	2	1	2	-	-	1
CO4	-	-	-	-	-	-	1	2	1	1	1	2	-	-	1
CO5	-	-	-	-	-	-	2	1	1	1	1	2	-	-	1
Average	-	-	-	-	-	-	2	1	2	2	2	1	-	-	1
'3	'High	1	•	' 2	2' Moc	lerate			'1	' Low		•	'-' No (Correlati	ion
		Overa	ll CO	Attaiı	nment	,						2.34			
PO	-	-	-	-	-	-	1.56	0.78	1.56	1.56	1.56	0.78	-	-	0.78
Attainmen	t														

Semester	r: 3RD	Subject Name: Network Theory	Subject Code:
			20BTEETPC301
		Course Outcomes	s
CO1	11.	repts of network theorems and coupled circuits in a response and analysis of different resonant of	
CO2		the switching phenomena of electrical circuits to using Laplace Transformation	and evaluate transient and Steady State
CO3	Determine circuits.	two-port network parameters and their practical	l application to electrical and electronic

CO4				al & no l exam			_		-	rier seri	ies and	transfo	m, ider	ntify &d	esign
CO5	Identi	fy Net	work	Functi	ions ar	nd synt	hesize	one p	ort ne	twork u	sing Fo	ster and	d Cauer	forms.	
					(CO-PC) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	2			2	1		2	2		
CO2	3	3	2	1	1	2			2	1		2	2		
CO3	3 3 2 2 1 2 3 1												2		
CO4	3	3	2	1	1	1			2	2		1	3		
CO5	3	3	3	2	2	3			3	1		2	3		
Average	3.00	3.00	2.00	1.40	1.20	2.00			2.4	1.2		1.80	2.40	-	-
'3'High			'2'	Mode	erate			'1' Lo	OW	I	l	'-' N	o Corre	lation	
Overall CO	Attair	nment										2.87			
PO Attainment	2.87	2.87	1.91	1.34	1.15	1.91			2.296	1.148		1.72	2.30		

Semester: 3RD	Subject Name: Analog Electronics Circuit	Subject Code:
		20BTEETPC3O2

							C	ourse	Outco	mes						
CO1	To an	alyses o	differe	nt biasi	ing con	ıfigurat	tions ar	nd its a	pplicati	ions						
CO2	To stu	dy the	differe	ent mod	delling	of BJT	's and I	FETs.								
CO3	To stu	dy the	high f	requen	cy and	low fre	equenc	y analy	sis.							
CO4	To stu	dy the	oscilla	itors ,p	ower a	mplifie	ers and	their a _l	plicati	ions in e	lectronic	cs				
CO5	Desig	n and	analy	sis of o	differe	nt type	es of p	ower a	mplifi	ers and	tuned a	amplifie	ers.			
					(CO-PC) Map	ping					CO-PS	O Mapı	oing	
Sl. No	PO1															
CO1	3															
CO2	3	3	3	3	3	2	1	-	-	-	2	2	3	3	-	
CO3	2	2	2	2	1	-	-	-	-	-	1	1	2	3	-	
CO4	3	3	3	2	2	1	1	-	-	-	1	1	2	2	-	
CO5	3	2	2	1	-	-	-	-	-	-	-	-	1	1	-	
Average	2.80	2.60	2.60	2.20	2.25	1.67	1.33	-	-	-	1.50	1.50	2.20	2.40	-	
'3'High	1		'2'	Mode	erate			'1' Lo	ow	I	L	'-' N	o Corre	lation		
Overall CO	Attaiı	nment										2.54				
PO	2.37	2.20	2.20	1.86	1.90	1.41	1.12				1.27	1.27	1.86	2.03		
Attainment																

Semester: 3	RD		Subj	ect Na	me: U	niver	sal Hu	ıman `	Values	5		-	ct Code FHS305			
			l				Co	ourse	Outco	mes						
CO1	Moe a	aware	of the	mselve	es and	their s	surroui	ndings	(famil	y,societ	y,natur	e).				
CO2	_				_					ndling p n mind.		s with s	sustaina	ble solu	tions,	
CO3	They	would	have	better	critica	l and	analyti	ical ab	ility aı	nd sense	e of livi	ng in ha	armony	•		
CO4							their an soc		itment	toward	ls what	they ha	ive und	erstood(human	
CO5	_	They would be ale to apply what they have learnt to their own self in different day to day settings a real life, at least a beginning would be made in this direction. CO-PO Mapping CO-PSO Mapping														
Sl. No	CO-PO Mapping CO-PSO Mapping PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0															
CO1	2	1	1	-	1	-	-	-	-	-	-	-	-	1	-	
CO2	2	2	1	1	-	-	-	-	-	-	-	-	-	2	-	
CO3	2	2	2	1	-	-	-	-	-	-	-	-	-	1	-	
CO4	3	-	1	-	-	-	-	-	-	-	-	-	-	1	-	
CO5	2	1	2	-	-	-	-	-	-	-	-	-	-	1	-	
Average	2.2	1.2	1.4	0.4	0.2	-	-	-	-	-	-	-	-	1.2	-	
'3'High			'2'	Mode	erate			'1' Lo	OW	I	L	'-' N	o Corre	lation		
Overall CO	Attair	ment										2.4				
PO	1.76	0.96	1.12	0.32	0.16	-	-	-	-	_	-	-	-	0.96	-	
Attainment																

Semester: 31	RD		Subj	ect Na	me: I	Envir	onme	ental	Scien	ce			ct Code CMC30			
			I				C	ourse	Outco	mes						
CO1		ly conderstand	_			-			hain a	nd biog	eochem	ical cyc	cles for	better		
CO2		erstand conmen			_	lients,	toleran	ce leve	ls and	environ	mental l	aws for	prevent	ionof		
CO3	Enha	ınce kn	owled	lge of	water a	ınd wa	stewate	er treat	ment fo	or preve	ention of	f water j	pollution	1.		
CO4		erstand			-	_	tants i	n the	atmosp	ohere, so	oil and	ground	water a	ndunde	rstand	
CO5		Enhance knowledge of waste minimization technique to minimize and manage solid, hazardous wastes generated in different areas. CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	1	-	-	-	-	2	3	1	2	-	1	-	-	2	-	
CO2	1	-	-	-	-	3	3	3	2	-	1	-	-	2	-	
CO3	1	-	-	-	-	2	2	2	2	-	1	-	-	2	-	
CO4	1	-	-	-	-	1	2	1	1	-	1	-	-	2	-	
CO5	1					2	3	1	2		1			2		
Average	1	-	-	-	-	2.2	2.6	2.4	2.2	-	1	-	_	2	-	
'3'High	<u>l</u>	<u>l</u>	'2'	Mode	erate	<u>l</u>	<u> </u>	'1' L	ow	1	<u> </u>	'-' N	o Corre	lation	l	
Overall CO	Attaiı	nment										2.40				
PO	0.8	-	-	-	-	1.76	2.08	1.92	1.76	-	0.8	-	-	1.6	-	
Attainment																

Semester: 3	3RD		Subj	ect Na	me: N	Netwoi	k The	eory L	ab			_	ct Code EEPPC		
			I				C	ourse	Outco	mes					
CO1	_			-										ton's the	
CO2			-	-	-				-		ing the o		eristics	of series	s and
CO3	_		-					_	-	_	-	-		band-rej plication	
CO4		filters by analyzing their gain vs. frequency characteristics for signal conditioning applications. Investigate and determine network parameters such as Z, Y, ABCD, hybrid, and conductance parameters for two-port networks to understand their role in communication and control systems.													
CO5											ner to a	•	-	nct on tion sys	stems.
					(CO-PO) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	_	-	-	-	-	-	2	3	2	-
CO2	3	3	3	3	2	_	-	-	-	-	_	2	3	3	-
CO3	3	3	3	3	3	-	-	-	-	_	-	2	3	3	-
CO4	3	3	2	3	3	-	-	-	-	-	-	3	3	3	-

CO5	3	3	2	3	2	-	-	-	-	-	-	3	3	3	-
Average	3	3	2.4	3	2.4	-	-	-	-	-	-	2.4	3	2.8	-
'3'High	'3'High '2' Moderate '1' L							'1' Lo	ow '-' No Correlation						
Overall CO	Overall CO Attainment									2.16					
PO Attainment		2.16	1.72	2.16	1.728	-	-	-	-	-	-	1.728	2.16	2.016	

Semester: 3RD			1 2										Subject Code: 20BTEEPPC302				
	Course Outcomes																
CO1	Design, assemble and test BJT biasing circuits.																
CO2	Analy	Analyze the Dc and Ac performance of BJT and FET.															
CO3	Under	Understand the frequency response of single & multi-stage BJT and compare the results.															
CO4	Study	Study operational amplifier and its various applications.															
CO5	Analy	Analyze and design various wave shaping circuits															
	CO-PO Mapping											CO-PSO Mapping					
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2	3	2	2	3	-	2	2	3	2	3	2	3	2	3		
CO2	3	2	2	2	2	-	2	2	2	2	2	3	3	2	3		
CO3	3	3	3	2	2	-	2	2	2	2	2	3	2	1	3		

CO4	3	3	3	3	3	-	2	-	2	3	3	3	3	2	2
CO5	3	3	3	3	3	-	2	-	2	3	3	2	3	2	2
Average	2.8	2.8	2.6	2.4	2.6	0	2	2	2.2	2.4	2.6	2.6	2.8	1.8	2.6
'3'High	'3'High '2' Moderate '1' I								ow '-' No Correlation						
Overall CO	Overall CO Attainment								2.52						
PO	2.35	2.35	2.18	2.01	2.18		1.68	1.68	1.84	2.01	2.18	2.18	2.35	1.51	2.18
Attainment															

Semester	: 3RD	Subject Name: Data Structures Using C Lab	Subject Code: 20BTPES308
		Course Outcomes	I
CO1	Understand	d and implement basic data structures like arrays, linke	ed lists, stacks, and queues.
CO2	Develop ar	nd analyze algorithms for sorting and searching operat	ions.
CO3	Apply dyna	amic memory management techniques for optimized of	lata handling
CO4	Implement	tree and graph data structures for real-world applicati	ons.
CO5	Develop ef	ficient algorithms for engineering applications using C	C programming.
		CO-PO Mapping	CO-PSO Mapping

Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	1	1	1	2	2	1	3	3	2	1
CO2	3	3	3	2	3	1	1	1	2	2	1	3	3	3	2
CO3	3	3	3	3	3	1	1	1	2	2	1	3	3	3	2
CO4	3	3	3	3	3	1	1	1	2	2	1	3	3	3	3
CO5	3	3	3	3	3	1	1	1	2	2	2	3	3	3	3
Average	3	3	2.8	2.6	3	1	1	1	2	2	1.2	3	3	2.8	2.2
'3'High			'2'	Mode	erate			'1' Lo	ow	I		'-' N	o Corre	lation	
Overall CO	Attair	ment										2.45			
PO	2.45	2.45	2.28	2.12	2.45	0.81	0.81	0.81	1.63	1.63	0.98	2.45	2.45	2.28	1.79
Attainment															

Semester: 3	RD	Subject Name: Employability Skill I	Subject Code: 20BTEEPPC303
		Course Outcomes	
CO1	Use gramma	ar and vocabulary in appropriate context	

CO2	Comp	rehend	d the g	given t	exts a	nd resp	ond a	ppropi	riately	•						
CO3	Comr	nunica	te cor	nfident	ly in v	arious	conte	xts and	d diffe	rent cul	ltures.					
CO4	_	ire bas ing ski	-	ficiend	cy in E	English	inclu	ding re	ading	and list	tening o	omprel	nension,	, writing	g and	
CO5	Under	rstand	the nu	iances	of the	place	ment p	roced	ure and	d perfor	m at pl	acemen	t tests e	effective	ely	
					(CO-PO) Map	ping					CO-PS	O Mapı	ping	
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS02 - - - - 2 2 3 3 2 3 - - 2														
CO1																
CO2	2 1 3 3 3 2 3 2														2	
CO3	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2	
CO4	-	-	-	-	-	-	2	2	3	3	2	2	-	-	2	
CO5	-	-	-	-	-	-	2	3	3	3	2	2	-	-	2	
Average	-	-	-	-	-	2.00	1.80	2.80	3.00	3.00	2.00	2.60	-	-	2.00	
'3'High			'2'	Mode	erate		<u> </u>	'1' Lo	DW			'-' N	o Corre	lation		
Overall CO	Attair	nment										2.52				
PO Attainment	-	-	-	-	-	1.68	1.51	2.35	2.52	2.52	1.68	2.18	-	-	1.68	

Semester: 4'	ТН		Subj	ect Na	me: D	Digital	Electi	ronics	Circu	its		_	ct Code EETPC		
							C	ourse	Outco	mes					
CO1	To un	dersta	nd w	orking	of log	gic fan	nilies a	nd lo	gic ga	tes					
CO2	To de	sign a	nd im	pleme	nt com	binati	onal aı	nd see	quenti	al logic	gates				
CO3	To un	dersta	nd the	proce	ess of a	nalog	ue to	digita	ıl conv	version a	and dig	ital to a	nalogue	e conve	ersion
CO4	To be	come	able to	o use p	rograi	mmabl	le logic	c devic	es to	implen	nent the	e given	logic pi	oblem	
CO5	To be	come	able t	to redu	ice PO	S to S	OP an	d vice	e versa	a using	K-Map				
					(CO-PC) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	-	-	-	2	2	3	3	-
CO2	3	3	3	3	3	2	1	-	-	-	2	2	3	3	-
CO3	2	2	2	2	1	-	-	-	-	-	1	1	2	3	-
CO4	3	3	3	2	2	1	1	-	-	-	1	1	2	2	-
CO5	3	2	2	1	-	-	-	-	-	-	-	-	1	1	-
Average	1.5	2.6	2.6	2.2	2.25	1.66	1.33				1.5	1.5	2.2	2.4	-
'3'High			'2'	Mode	erate	I		'1' Lo	ow	l	L	'-' No	o Corre	lation	L
Overall CO	Attaiı	nment										2.32			
PO											1.16	1.16	1.70	1.86	-
Attainment	1.16	2.01	2.01	1.70	1.74	1.28	1.03								

Semester: 47	ГН		•	ect Na TING		ENGIN	NEER	ING E	CON	OMICS	SAND	_	ct Code CH54O			
							C	ourse	Outco	mes						
CO1	Evalu	iate the	e econ	omic tl	neories	, cost o	concep	ts and _I	oricing	policies						
CO2	Unde	erstand	I the m	neasure	es of na	itional	income	e, the fu	unction	s of ban	ks and o	concepts	of glob	alizatior	1	
CO3	Appl	y the co	oncept	s of fir	ancial	manag	ement	for pro	ject ap	praisal						
CO4	Unde	erstand	accou	ınting s	system	s and a	nalyze	financi	al state	ements (using rat	io analy	sis			
CO5	repla	nderstand the impact of inflation, taxation, depreciation. Financial planning, economic basis for placement, project scheduling, and legal and regulatory issues are introduced and applied to onomic investment and project-management problems CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1							2	1	2	2	2	1			1	
CO2							2	2	2	1	1	1			1	
CO3							1	2	1	2	1	2			1	
CO4							1	2	1	1	1	2			1	
CO5							2	1	1	1	1	2			1	
Average							1.6	1.6	1.4	1.4	1.2	1.6	-	-	1	
'3'High	1		'2'	Mode	erate			'1' Lo)W			'-' No	o Corre	lation		
Overall CO	Attair	nment										2.42				
PO Attainment	-	-	-	-	-	-	1.29	1.29	1.4	1.4	0.96	1.29	-	-	0.80	

Semester: 47	ГН		Subj	ect Na	me: E	Clectri	cal Ma	achine	s–I			•	t Code			
							C	ourse	Outco	mes		1				
CO1	Apply	the kn	owled	ge on t	he basi	ic conc	epts ele	ectrome	echanic	cal energ	gy conve	ersion.				
CO2	Under	stand t	he con	structio	onal fea	atures a	and wir	nding a	nd ope	rating p	rinciple	of dc mo	otor.			
CO3	Analy	ze the j	perfori	mance 1	like spe	eed cor	ntrol, st	arting	braking	g chara	cteristic	s and us	es of dc	machine	;	
CO4	Analy	ze the	perfor	mance	constr	uction	of sing	le phas	e of tra	ansforme	er. both	single pl	nase & t	hree pha	se	
CO5	Under	CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	CO-PO Mapping CO-PSO														
CO1	3	3	2	3	2	1		-	-	-		1	2	2	3	
CO2	3	3	3	3	2	2		-	-	-		1	3	3	3	
CO3	3	3	2	3	2	1		-	-	-		2	3	1	3	
CO4	2	2	2	2	2	2		-	-	-		1	2	2	2	
CO5	2	2	2	2	2	1		-	-	-		2	2	2	2	
Average	2.60	2.60	2.20	2.60	2.00	1.40		-	-	-		1.40	2.40	2.00	2.6	
'3'High	<u> </u>	<u> </u>	'2'	Mode	erate	1	<u> </u>	'1' L	OW	1	<u>I</u>	'-' N	o Corre	lation		
Overall CO	Attair	nment										2.38				
PO	2.06	2.06	1.74	2.06	1.58	1.11	-	-	-	_	-	1.11	1.90	1.58	2.06	
Attainment																

Semester:	energy work O2 Estimate O3 Understa their appl O4 Understa O5 Learn the SI. No PO1 PO		_		me: E					REME	NT	Subject 20BTE	et Code ETPC4		
							C	ourse	Outco	omes					
CO1		•									nent of o	current,	voltage,	powera	and
CO2	Estima	ate acc	urately	y the va	alues o	f R, L a	nd C er	mployii	ng suita	able brid	lges.				
CO3		nderstand the construction, theory and working of Potentiometers and Instrument Transformers and eir applications. Inderstand the working of electronics instruments.													
CO4	Under	nderstand the working of electronics instruments.													
CO5	Learn	rarn the working principle of Oscilloscope.													
					(CO-PC) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	3	_	_	_	1	2	1	2	3	2	2
CO2	3	3	2	2	2	_	_	_	2	2	1	2	3	2	2
CO3	3	2	2	2	2	_	_	_	1	2	1	2	3	2	2
CO4	3	2	1	1	3	_	_	-	1	2	1	2	3	2	2
CO5	2	1	1	1	3	_	_	-	1	2	1	2	2	1	1
Average	2.80	2.00	1.40	1.40	2.60	-	-	-	1.2	2.00	1.00	2.00	2.80	1.80	1.80

'3'High			'2'	Mode	erate			'1' Lo	ow			'-' N	o Corre	lation	
Overall CO	Attaiı	nment									2.55				
PO	2.38	1.7	1.19	1.19	2.21				1.02	1.7	0.85	1.7	2.38	1.53	1.53
Attainment															

Semester:	4TH		Subj	ect Na	ame: E	CLEC	TRO N	MAGN	ETIC	C THE	ORY	•	ct Code EETPC		
			1				C	ourse	Outco	mes					
CO1	Explai	n vario	us co-	ordina	te syste	ems an	d solve	proble	ms inv	olving v	ector ca	lculus.			
CO2	Descr	ibe eled	ctrosta	itic fiel	ds, the	ir chara	acterist	ics and	associ	ated pa	rameter	·s			
CO3	Visual	lize magneto-static fields, their characteristics and associated parameters.													
CO4	Analy	llyze and apply Maxwell's equations to various electromagnetic fields													
CO5	Interp	ret the	propa	gation	of EM	waves	throug	gh diffe	rent m	ediums					
					(CO-PO) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	2		-	-	-		2	3	3	3
CO2	3	3	3	3	2	1		-	-	_		2	2	2	3
CO3	2	2	2	2	2	1		-	-	-		2	3	2	2

CO4	2	3	3	2	2	1		-	-	-		1	2	2	2
CO5	3	2	1	2	2	2		-	-	-		2	2	2	3
Average	2.60	2.60	2.40	2.40	2.00	1.40		-	-	-		1.80	2.40	2.20	2.6
'3'High		•	'2'	Mode	erate	•	'1' Lo)W			'-' N	o Corre	lation		
Overall CO	Attair	ıment										2.35			
PO	2.03	2.03	1.88	1.88	1.56	1.09	-	-	-	-	-	1.41	1.88	1.72	2.03
Attainment															

Semester	:: 4TH	Subject Name: Constitution of India	Subject Code: 20BTTMC402
		Course Outcomes	l
CO1	Understand	d the significance of the Constitution and its role in significance	haping the governance of India.
CO2	Gain know	ledge of fundamental rights, duties, and directive pri	inciples of state policy.
CO3	Analyze th	ne structure of the Indian government and judiciary sy	ystem.
CO4	Apply con	stitutional principles to professional and ethical responsi	onsibilities.
CO5	Recognize	the legal and regulatory framework relevant to engin	neering and industrial laws.
		CO-PO Mapping	CO-PSO Mapping

Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	3	2	3	2	2	-	2	-	-	-
CO2	-	-	-	-	-	3	2	1	2	2	-	1	-	-	-
CO3	-	-	-	-	-	3	2	3	1	1	-	1	-	-	-
CO4	-	-	-	-	-	3	1	2	1	1	-	2	-	-	-
CO5	-	-	-	-	-	3	1	2	1	2	-	1	-	-	-
Average	-	-	1	-	-	3	1.6	2.2	1.4	1.6	-	1.4	-	-	-
'3'High	I		'2'	Mode	erate			'1' Lo	ow	I		'-' No	o Corre	lation	
Overall CO	Attair	ment										2.12			
PO	-	-	-	-	-	2.12	1.13	1.55	0.98	1.13	-	0.98	-	-	-
Attainment															

Semester: 4	Explain diff	Subject Name: Digital Signal Processing	Subject Code: 20BTEETOE401
		Course Outcomes	
CO1	Explain diffe	rent types of signals and analyze various types of LSI sy	ystems responses.
CO2	Investigate th	ne systems stability and causality using Z-Transform	

CO3	Analy	ze disc	rete si	gnals a	nd syst	ems us	ing DF	T tech	nique.						
CO4	Realiz	e diffe	rent st	ructure	s of FI	R and I	IR disc	crete tii	ne syst	tems					
CO5	Design	n IIR a	nd FIR	filters	using	various	techni	iques.							
					(CO-PO) Map	ping					CO-PS	O Mapp	oing
Sl. No	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														PSO3
CO1	3	3	3	3	3	2	2	-	-	-	2	2	3	3	-
CO2	3	3	3	3	3	2	1	-	-	-	2	2	3	3	-
CO3	2	2	2	2	1	-	-	-	-	-	1	1	2	3	-
CO4	3	3	3	2	2	1	1	-	-	-	1	1	2	2	-
CO5	3	2	2	1	-	-	-	-	-	-	-	-	1	1	-
Average	2.80	2.60	2.60	2.20	2.25	1.67	1.33	-	-	-	1.50	1.50	2.20	2.40	-
'3'High			'2'	Mode	erate			'1' Lo	OW	l		'-' N	o Corre	lation	
Overall CO	Attair	nment										2.52			
PO	2.35	2.18	2.18	1.84	1.89	1.40	1.11				1.26	1.26	1.84	2.01	
Attainment															

Semester: 4th	Subject Name: Electrical Machines-1 Lab	Subject Code:

												20BTF	EEPPC	403		
							Co	ourse	Outco	mes						
CO1	Deteri	mine di	ifferer	it chara	acterist	ics of E	OC gene	erator								
CO2	Deteri	mine et	fficien	cy of D	C shun	t moto	r.									
CO3		mine et		cy and	voltage	e regul	ation o	f single	phase	transfo	rmer an	d scott (connecti	on of tw	10	
CO4	Deteri	mine va	arious	speed	contro	l techn	iques c	of DC sł	nunt m	otor.						
CO5	Know	Know the connection and parallel operation of transformers.														
		CO-PO Mapping CO-PSO Mappin														
Sl. No	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO5 PS														PSO3	
CO1	2	3	2	3	3	2	1	-	1	-	-	2	3	2	3	
CO2	2	2	2	2	2	1	1	-	1	-	-	1	3	2	2	
CO3	3	2	2	2	2	1	1	-	1	-	-	1	3	2	3	
CO4	3	3	3	2	1	1	1	-	1	-	-	1	3	2	2	
CO5	2	2	3	3	3	2	1	-	1	-	-	2	3	2	3	
Average	2.4	2.4	2.4	2.4	2.2	1.4	1	-	1	-	-	1.4	3	2	2.6	
'3'High			'2'	Mode	erate			'1' Lo	ow		ı	'-' N	o Corre	lation		
Overall CO	Attaiı	nment										1.55				
PO Attainment	1.24	1.24	1.24	1.24	1.14	0.72	0.52		0.52			0.72	1.55	1.03	1.34	

Semester: 4 ^t	h		•		me: E instru					&		•	t Code EPPC4			
							Co	ourse	Outco	mes		l				
CO1	Estim	ate acc	curate	ly the	values	of R,	L, and	l C em	ployin	g suital	ole brid	ges.				
CO2	Measi	ure po	wer ai	nd ene	rgy wi	th suit	able m	neasuri	ng ins	trument	ts.					
CO3	Know	about	topera	ation o	of CT,	PT.										
CO4	Select	t appro	priate	electi	onic i	nstrum	nents fo	or vari	ous m	easuren	nents.					
CO5	Find o	Find out iron loss using B-H curve. CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 P														
CO1	3	3	2	2	2	_	_	_	2	2	1	2	3	2	3	
CO2	3	3	2	2	2	_	_	_	1	2	2	2	3	2	2	
CO3	3	2	2	2	2	-	_	-	1	2	2	2	3	2	2	
CO4	3	2	2	2	3	_	_	_	2	2	1	2	3	2	3	
CO5	3	2	2	2	2	_	_	_	1	2	1	2	3	1	3	
Average	3	2.4	2	2	2.2	-	-	-	1.4	2	1.4	2	3	1.8	2.6	
'3'High		1	'2'	Mode	erate			'1' Lo	ow	•		'-' No	o Corre	lation		
Overall CO	Attaiı	nment							2.78							
PO Attainment	2.78	2.22	1.85	1.85	2.03	-	-	-	1.29	1.85	1.29	1.85	2.78	1.66	2.40	

Semester: 47	ГН		Subj	ect Na	me: D	igital	Electi	ronics	Circu	its Lab	1		et Code EEPPC			
							C	ourse (Outco	mes		I				
CO1	Verif	y Digit	al Lo	gic Ga	tes.											
CO2		•		l multi l adder					nd des	ign, con	nstruct a	and test	half ad	lder and	half	
CO3	Verif	y diffe	rent ty	ype of	MUX.											
CO4	Verif	Verify SR flip flop, clocked SR flip flop and JK flip flop.														
CO5	•	Verify VHDL Program for half adder using XOR and Gate, VHDL Program for full adder using half adder and OR Gate and VHDL Program for SR flip flop, JK flip flop and D flip flop.														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	1	2	-	-	-	2	1	-	-	2	3	-		
CO2	3	3	2	3	-	-	-	3	2	1	-	2	3	2	-	
CO3	3	2	3	2	-	-	-	2	1	-	-	2	2	3		
CO4	3	3	3	3	-	-	-	3	2	1	-	3	3	2	2	
CO5	3	3	3	3	-	-	-	3	3	2	1	3	3	3	3	
Average	3	2.6	2.4	2.6	-	-	-	2.6	1.8	1.33	1	2.4	2.8	2.5	2.5	
'3'High	<u> </u>	1	'2'	Mode	rate		<u> </u>	'1' Lo)W	I		'-' No	o Corre	lation		
Overall CO	Attaiı	nment										2				
PO Attainment	2	1.733	1.6	1.733	-	-	-	1.733	1.2	0.88	0.66	1.6	1.86	1.66	1.66	

Semester: 4	TH		Subj	ect Na	me: N	/Iini l	Proje	ct-1				_	ct Code			
			l .				C	ourse	Outco	mes		1				
CO1	Identi	fy and	defin	e an e	lectrica	al engi	neerin	g prob	olem a	nd prop	ose a so	olution.				
CO2	Apply	funda	ament	al engi	neerin	g kno	wledge	e to de	sign a	nd deve	elop a w	orking	prototy	pe.		
CO3	Utiliz	e mod	ern en	gineer	ring to	ols, so	ftware	, and l	nardwa	are for p	project	implem	entation	1.		
CO4	Work	Work effectively as an individual and in a team to complete the project within a deadline.														
CO5	Communicate project findings effectively through reports, presentations, and documentation													1.		
					(CO-PC) Map	ping					CO-PS	SO Map	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	3	2	1	1	1	2	2	2	3	3	2	3	
CO2	3	3	3	3	3	1	1	1	2	2	2	3	3	2	3	
CO3	3	2	3	3	3	1	1	1	2	2	2	3	3	2	3	
CO4	2	1	2	2	2	1	1	1	3	3	3	2	2	2	2	
CO5	2	1	2	2	2	1	1	1	3	3	3	2	2	2	2	
Average	2.6	2	2.4	2.6	2.4	1	1	1	2.4	2.4	2.4	2.6	2.6	2	2.6	
'3'High	1	1	'2'	Mode	rate	'1' Lo	ow	1	l	'-' N	o Corre	lation				
Overall CC	Attair	nment										2.45				

PO	2.123	1.633	1.96	2.12	1.96	0.816	0.816	0.816	1.96	1.96	1.96	2.12	2.12	1.633	2.12
Attainment															

Semester:	4TH		Subj	ect Na	me: I	Emplo	oyabi	lity S	kill I	I		•	t Code EEPP			
			l .				C	ourse	Outco	omes						
CO1	Deve	lop adv	vance	d com	munica	ation a	nd pre	sentat	ion ski	ills for p	professi	onal en	vironm	ents.		
CO2	Enhai	nce cri	tical t	hinkin	g, prol	blem-s	olving	g, and o	decisio	on-maki	ing abil	ities in	electric	al engin	eering.	
CO3	Streng	strengthen technical proficiency through real-world applications of electrical engineering concepts														
CO4	Impro	Improve teamwork, leadership, and adaptability in professional and corporate settings.														
CO5	Prepa	re stuc	lents f	for con	npetiti	ve exa	ms, te	chnica	l inter	views, a	and enti	reprenei	urship o	pportur	nities.	
					(CO-PC) Map	ping					CO-PS	O Mapı	oing	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	1	1	1	1	1	1	0	2	2	3	1	2	2	3	1	
CO2	2	3	2	2	2	1	0	1	1	2	2	3	3	3	2	
CO3	3	3	2	2	3	1	0	1	1	2	2	3	3	3	3	
CO4	2	2	2	2	2	2	0	2	3	3	2	3	2	3	2	

CO5	1	2	1	1	2	1	0	2	3	3	2	3	2	3	2
Average	1.8	2.2	1.6	1.6	2	1.2	0	1.6	2	2.6	1.8	2.8	2.4	3	2
'3'High		•	'2'	Mode	erate	'1' Lo	ow	1		'-' No	o Corre	lation			
Overall CO	Attair	ıment										2.40			
PO Attainment	1.44	1.76	1.28	1.28	1.6	0.96	1.28	1.6	2.08	1.44	2.24	1.92	2.4	1.6	
Attaillillent															

Semester	:: 5TH	Subject Name: Electrical Machine-II	Subject Code: 20BTEETPC512
		Course Outcomes	·
CO1	Describe	the construction, operation and performance of Three-p	phase induction machines.
CO2	Apply the	e methods of starting & speed control of three-phase ind	uction motors.
CO3	Explain t	he constructional details and performance of different ty	pes of synchronous generators.
CO4	·	he constructional details and performance of different ty ristic curves.	pes of synchronous motors and plot their
CO5	Explore s	single-phase induction motors, special type of machines.	
		CO-PO Mapping	CO-PSO Mapping

Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	_	_	_	_	2	_	_	2	1	3
CO2	3	2	2	2	3	-	-	_	-	2	_	-	2	1	3
CO3	2	1	1	1	2	-	-	_	-	1	-	_	1	1	2
CO4	3	2	2	2	2	-	-	_	-	2	_	_	2	1	3
CO5	3	2	2	2	2	-	-	_	-	2	-	_	2	1	3
Average	2.80	1.80	1.80	1.80	2.20	-	-	-	-	1.8	-	-	1.80	1.00	2.8
'3'High			'2'	Mode	erate			'1' Lo	ow	I		'-' N	o Corre	lation	
Overall CO	Attair	nment										2.55			
PO Attainment	2.38	1.53	1.53	1.53	1.87	-	-	-	-	1.53	-	-	1.53	0.85	2.38

Semester	:: 5TH	Subject Name: CONTROL SYSTEM ENGINEERING	Subject Code: 20BTEETPC510
		Course Outcomes	
CO1		and apply basic concepts of control system to develong and also study effect of feedback on system to develong and also study effect of feedback on system to be a second and also study effect of feedback on system and also study effect of feedback on the system and also study effect of the sys	
CO2		d test signals to determine performance characteristine stability using time domain techniques.	ics of first and second-order systems and

CO3		fy the rency do			equen	cy dom	ain ana	alysis a	nd app	ly it to d	letermir	ne differ	ent type	es of stak	oility in
CO4				een Tra entiona						pproach	of desc	ribing a	system	and und	erstand
CO5	Under indust		differe	nt type	s of co	ntrol c	ompor	ients ai	nd its d	lesign fo	r reliabl	e and et	fficient a	application	on in
					(CO-PC) Map	ping					CO-PS	O Mapı	oing
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	-	-	-	-	2	-	-	3	2	3
CO2	2	3	2	2	2	1	-	-	-	2	-	-	3	2	3
CO3	2	2	3	2	1	-	-	-	-	1	-	-	2	1	2
CO4	1	2	2	2	3	-	-	-	-	2	-	-	2	1	2
CO5	1	2	1	2	3	-	-	-	-	1	-	-	2	1	2
Average	1.80	2.20	2.00	1.80	2.20	-	-	-	-	1.6	-	-	2.40	1.40	2.4
'3'High			'2'	Mode	erate			'1' Lo)W			'-' N	o Corre	lation	
Overall CO	Attair	ıment										2.55			
PO Attainment	1.53	1.87	1.70	1.53	1.87	-	-	-	-	1.36	-	-	2.04	1.19	2.04

Semester: 5TH	Subject Name: POWER ELECTRONICS	Subject Code:
		20BTEETPC511

							C	ourse	Outco	mes					
CO1	Descri	be the	chara	cteristi	cs of P	ower se	emicon	ductor	device	es and th	yristor	family.			
CO2	Explai	n, anal	yze, ar	nd desi	gn AC -	- DC an	nd AC -	AC con	verter	s for rea	l-world	applicat	ions.		
CO3	Explai	n, anal	yze, ar	nd desi	gn DC -	- DC co	nverte	rs for re	eal-wo	rld appli	cations.				
CO4	Explai	n, anal	yze, ar	nd desi	gn DC -	– AC co	nverte	rs for r	eal-wo	rld appl	ications	•			
CO5	Know	Know about practical application of power electronics devices.													
		CO-PO Mapping CO-PSO Mapping													
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO													PSO3
CO1	3	2	2	1	1	-	-	-	-	-	-	-	2	1	2
CO2	2	3	3	2	2	-	-	-	-	2	-	-	3	2	3
CO3	2	3	3	2	2	-	-	-	-	2	-	-	3	1	3
CO4	2	3	3	2	2	-	-	-	-	2	-	-	3	1	3
CO5	1	2	2	1	1	-	-	-	-	1	-	-	2	1	2
Average	2.00	2.60	2.60	1.60	1.60	-	-	-		1.75	-	-	2.60	1.20	2.6
'3'High	1		'2'	Mode	erate			'1' Lo)W			'-' N	o Corre	lation	
Overall CO	Attaiı	nment										2.55			
PO Attainment	1.70	2.21	2.21	1.36	1.36	-	-	-	-	1.49	-	-	2.21	1.02	2.21

Semester: 57	ГН		Subj	ect Na		lectrio Distrib		er Tra	nsmis	sion an	d		et Code EETPC			
							Co	ourse	Outco	mes		L				
CO1					inductine pa		-	acitan	ice pre	esent in	the pov	ver line	s and th	e		
CO2	Analy	ze the	perfo	rmanc	e of th	e tran	smissio	on line	s unde	er differ	ent ope	erating o	conditio	ons.		
CO3	Desig	n the 1	necha	nical a	and ins	sulatio	n syste	em of t	ransm	ission l	ines.					
CO4	Desig	n AC	& DC	distri	bution	syster	n with	capac	itors a	nd filte	rs.					
CO5	Get a	n insig	ht of	the und	dergro	und ca	bles, t	heir co	onstruc	ction an	d requi	rement	of earth	ing.		
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	2	3	1	1	1	2	-	-	-	1	1	1	-	-	
CO2	2	2	3	1	1	2	2	-	-	-	1	1	1	-	-	
CO3	3	1	3	1	1	1	1	-	-	-	1	1	1	-	-	
CO4	3	3	2	3	2	2	2	-	-	-	2	1	3	-	-	
CO5	3	3	3	3	2	2	2	-	-	-	1	2	2	-	-	
Average	2.8	2.2	2.8	1.8	1.4	1.6	1.8				1.2	1.2	1.6	-	-	
'3'High	1	1	'2'	Mode	erate	1	1	'1' Lo	ow	I		'-' N	o Corre	lation		
Overall CO	Attair	nment										2.571	-			
PO Attainment	2.40	1.88	2.40	1.54	1.20	1.37	1.54	-	-	-	1.03	1.03	1.37	-	-	

Semester: 5'	ГН						STRIA NAMI		OCES	S		_	ct Code EETPE		
							C	ourse	Outco	mes		ı			
CO1	Descri	be vari	ous da	ata acq	uisitior	n & sign	nal pro	cessing	eleme	ents used	d in the	industry	'.		
CO2	Prese	nt the	meas	ured c	lata us	ing va	rious p	oresen	tation	elemer	nts in a	user-fri	iendly n	nanner.	
CO3	Descr	ibe the	e proc	ess, cl	naract	eristics	s, type	s of co	ntrolle	ers, and	PID co	ntroller	tuning		
CO4	Ident	ify the	type	of fina	l contr	ol elei	ments	and ex	xplain	its worl	king pri	nciples			
CO5	Exam	ine & t	roubl	eshoo	t the v	arious	contr	oller s	tructu	res and	their c	onfigur	ations.		
					CO-PS	O Map	ping								
Sl. No	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 P													PSO2	PSO3
CO1	3	3	3	3	3	2	2	-	-	-	2	2	3	3	-
CO2	3	3	3	3	3	2	1	-	-	-	2	2	3	3	-
CO3	2	2	2	2	1	-	-	-	-	-	1	1	2	3	-
CO4	3	3	3	2	2	1	1	-	-	-	1	1	2	2	-
CO5	3	2	2	1	-	-	-	-	-	-	-	-	1	1	-
Average	2.80	2.60	2.60	2.20	2.25	1.67	1.33	-	-	-	1.50	1.50	2.20	2.40	-
'3'High	1		'2'	Mode	erate	I	1	'1' L	ow	1		'-' N	o Corre	lation	
Overall CO	Attaiı	nment										2.54			
PO Attainment		2.20	2.20	1.86	1.90	1.41	1.12				1.27	1.27	1.86	2.03	

Semester: 5	тн		Subj Tradi		me: E	ssence	of Ind	lian Kı	nowled	ge and		•	ct Code CMC50		
			1				C	ourse	Outco	mes		l			
CO1	Under		he fou	ndation	nal con	cepts o	f India	n know	ledge	systems	and thei	r releva	nce to m	odern	
CO2					of anci			ience, t	echnol	ogy, and	l engine	ering in	fields su	ich as	
CO3	Apply	ethic	al valı	ies and	d philo	sophic	cal tea	chings	from	Indian t	raditio	ns to en	gineerii	ng pract	ices.
CO4		Develop a sustainable and eco-friendly approach to engineering, inspired by traditional Indian environmental ethics. Enhance communication, teamwork, and leadership skills through discussions on Indian traditions.													
CO5	Enhance communication, teamwork, and leadership skills through discussions on Indian traditi and knowledge systems.													ditions	
					(CO-PC) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	1	2	2	3	1	2	1	3	2	2	1
CO2	2	2	2	2	1	2	2	2	1	2	1	3	2	2	2
CO3	1	1	1	1	1	3	2	3	2	2	2	3	1	3	2
CO4	1	1	1	1	1	2	3	3	2	2	1	3	1	2	3
CO5	1	1	1	1	1	2	2	2	3	3	2	3	2	3	1
Average	1.4	1.4	1.2	1.2	1	2.2	2.2	2.6	1.8	2.2	1.4	3	1.6	2.4	1.8
'3'High		1	'2'	Mode	erate	1	ı	'1' Lo	ow	I		'-' No	o Corre	lation	I
Overall CC	Attai	nment										2.4			

PO	1.12	1.12	0.96	0.96	0.80	1.77	1.77	2.09	1.45	1.77	1.12	2.42	1.29	1.93	1.45
Attainment															

Semester:	5TH		Subj	ect Na	ıme: E	lectrica	al Mach	nine-II	Labora	tory		•	ct Code	:	
							C	ourse	Outco	mes		l			
CO1			-					_			_			nd estim	
CO2	Know	about	operat	tion of	1- Ф in	ductio	n moto	r & fin	d out p	aramet	ers of 1-	Φ indu	ction mo	otor.	
CO3	Draw	Draw V-curve and inverted V-curve of synchronous motor.													
CO4	Find out Xd ,Xq and Xd", Xq" of salient pole synchronous machine.														
CO5	Know	about	speed	contro	of 3-0	D induc	ction m	otor by	y VVVF	control	method	I			
					(CO-PC) Map	ping					CO-PS	O Mapı	oing
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	2	3	2	1	1	1	-	-	2	3	2	2
CO2	3	3	2	2	2	1	1	1	1	-	-	1	3	2	3
CO3	3	2	2	3	2	1	1	1	2	-	-	1	3	2	2
CO4	3	2	3	2	3	1	1	1	1	-	-	1	3	2	3

CO5	2	2	3	2	2	1	1	1	1	-	-	2	2	3	2
Average	2.6	2.4	2.6	2.2	2.4	1.2	1	1	1.2	-	-	1.4	2.8	2.2	2.4
'3'High '2' Moderate '1' Low '-' No Correlation															
Overall CO	Attaiı	nment										2.55			
PO Attainment		2.04	2.21	1.87	2.04	1.02	0.85	0.85	1.02	_	-	1.19	2.38	1.87	2.04

Semester	:: 5 th	Subject Name: CONTROL SYSTEM ENGG. LABORATORY	Subject Code: 21BTEETPC507
		Course Outcomes	
CO1	Ĭ	e dynamic behavior of servo motors by determining the treat and understanding their role in control systems.	ransfer functions of DC and AC
CO2		ne performance of compensator networks by studying the rs for stability and phase correction in control systems.	ne frequency response of lead and lag
CO3	_	and validate control strategies such as ON/OFF and Preal-world applications.	ID controllers in temperature control
CO4		te the working principles of sensors and transducers les, thermistors, LVDTs, and strain gauges for measuremen	

CO5		bridg tance,			-				f electi	rical par	ameters	like res	sistance,	inducta	nce, and
					(CO-PC) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	3	-	_	-	2	1	1	2	3	2	3
CO2	3	3	2	3	3	-	2	-	1	1	-	2	3	3	3
CO3	3	3	3	3	3	2	2	-	2	2	1	3	3	3	3
CO4	3	3	2	3	3	1	2	-	2	2	1	3	3	2	3
CO5	3	3	2	3	3	-	2	-	1	1	-	2	3	2	3
Average	3	3	2.2	3	3	1.5	2	-	1.6	1.4	1	2.4	3	2.4	3
'3'High			'2'	Mode	erate			'1' L	DW			'-' N	o Corre	lation	
Overall CO	Attaiı	nment							2.34						
PO Attainment	2.34	2.34	1.72	2.34	2.34	1.17	1.56	-	1.25	1.09	0.78	1.87	2.34	1.87	2.34

Semester: 5 ^t	Subject Name: POWER ELECTRONICS LABORATORY	Subject Code: 21BTEETPC511
	Course Outcomes	

CO1	Interp	ret the	chara	acteris	tics of	SCR,	TRIA	C, IGE	3T and	MOSF	ET.					
CO2	Study	the tr	iggeri	ng circ	cuit of	SCR &	& TRI	AC.								
CO3	Analy	se var	ious p	ower	electro	onics c	onvert	ers.								
CO4	Evalu	ate the	e perfo	orman	ce of I	C-to-	DC co	nverte	rs and	its app	lication	S.				
CO5	Analyse the performance of VSI with PWM control.															
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3 2 1 2 3 1 2 1 2 3 2														3	
CO2	3 2 2 3 1 2 1 2												3	2	2	
CO3	3	3	2	2	3	_	_	_	2	2	2	2	3	2	3	
CO4	3	2	2	2	3	_	_	_	1	2	2	2	3	2	3	
CO5	3	3	2	2	3	_	_	_	1	2	2	2	3	2	3	
Average	3	2.4	1.8	2	3	-	-	-	1.2	2	1.6	2	3	2	2.8	
'3'High	1		'2'	Mode	erate			'1' L	ow	I	I	'-' N	o Corre	lation		
Overall CO	Attair	nment							2.34							
PO Attainment	2.34	1.87	1.40	1.56	2.34	-	-	-	0.94	1.56	1.25	1.56	2.34	1.56	2.18	

Semester: 5t	h		Subj	ect Na	me: S	Sumn	ner In	terns	ship				et Code EEPPSI			
							C	ourse	Outco	mes						
CO1	Apply	Theo	retica	l Knov	wledge	to Pra	actical	Scena	rios							
CO2	Devel	op Ha	nds-o	n Tecl	nnical	and In	dustria	ıl Skill	S							
CO3	Enhar	Enhance Problem-Solving and Analytical Abilities														
CO4	Impro	mprove Professional Communication and Teamwork														
CO5	Unde	Inderstand Industry Standards, Ethics, and Safety Practices														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PS														
CO1	2	2	2	2	2	3	2	3	2	2	1	2	2	2	2	
CO2	3	3	3	3	2	2	1	2	2	2	2	3	3	3	3	
CO3	2	2	2	2	3	2	1	1	2	2	2	2	2	2	2	
CO4	1	1	1	1	1	1	1	1	3	3	2	2	2	2	1	
CO5	1	1	1	1	1	1	1	1	3	3	2	2	2	2	1	
Average	1.8	1.8	1.8	1.8	1.8	1.8	1.2	1.6	2.4	2.4	1.8	2.2	2.2	2.2	1.8	
'3'High		I	'2'	Mode	erate	I	I	'1' Lo)W		I	'-' N	o Corre	lation		
Overall CO	Attair	nment										2.52				
PO	1.51	1.51	1.51	1.51	1.51	1.51	1.008	1.344	2.016	2.016	1.51	1.848	1.848	1.848	1.51	
Attainment											_				_	

Semester: 5	TH		Subj	ect Na	me: N	Aini	Proj	ject-]	II			_	ct Code			
			l .				C	ourse	Outco	mes						
CO1	Apply	Fund	ament	tal Ele	ctrical	Engin	eering	Conc	epts							
CO2	Enhar	nce Ha	nds-o	n Tecl	nnical	Skills										
CO3	Devel	Develop Problem-Solving and Critical Thinking Abilities														
CO4	Impro	Improve Teamwork and Project Execution Skills														
CO5	Streng	Strengthen Technical Documentation and Presentation Skills														
	CO-PO Mapping CO-P													O Mapı	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	2	2	1	1	2	2	2	3	3	2	3	
CO2	3	3	3	3	3	2	1	1	2	2	2	3	3	2	3	
CO3	3	2	3	3	3	2	1	1	2	2	2	3	3	2	3	
CO4	2	2	2	2	2	2	1	1	3	3	3	2	2	2	2	
CO5	2	1	2	2	2	1	1	1	3	3	3	2	2	2	2	
Average	2.6	2.2	2.6	2.6	2.4	1.8	1	1	2.4	2.4	2.4	2.6	2.6	2	2.6	
'3'High		I .	'2'	Mode	rate		I .	'1' Lo	ow	1		'-' N	o Corre	lation	l	
Overall CO	Attair	nment										2.42				

PO	2.09	1.77	2.09	2.09	1.93	1.45	0.80	0.80	1.93	1.93	1.93	2.09	2.09	1.61	2.09
Attainment															

Semester: 5	ТН		Subj	ect Na	me: E	EMPL	OYAI	BILIT	Y SKI	LL III		_	ct Code EPPC5		
			I				C	ourse	Outco	mes		<u>I</u>			
CO1	Devel	op pro	ofessio	onal co	mmur	nicatio	n, neg	otiatio	n, and	corpora	ate etiqu	iette sk	ills.		
CO2	Apply	critic	al thir	nking a	and ad	vanceo	l prob	lem-so	lving	techniq	ues to e	ngineer	ing cha	llenges.	
CO3	Utiliz	tilize modern tools and technologies for electrical engineering applications.													
CO4	Streng	trengthen leadership, team collaboration, and managerial abilities in professional settings.													
CO5	Prepa	re for	highe	r studi	es, cor	npetiti	ve exa	ıms, er	itrepre	eneurshi	p, and g	global c	areer o	pportun	ities.
					(CO-PC) Map	ping					CO-PS	O Mapı	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	0	2	2	3	1	2	2	3	1
CO2	2	3	2	2	2	1	0	1	1	2	2	3	3	3	2
CO3	3	3	2	2	3	1	0	1	1	2	2	3	3	3	3
CO4	2	2	2	2	2	2	0	2	3	3	2	3	2	3	2

CO5	1	2	1	1	2	1	0	2	3	3	2	3	2	3	2
Average	1.8	2.2	1.6	1.6	2	1.2	0	1.6	2	2.6	1.8	2.8	2.4	3	2
'3'High			'2'	Mode	rate		'1' Lo)W			'-' No	o Corre	lation		
Overall CO							2.40								

Semester	:: 6ТН	Subject Name: Microprocessors & Microcontrollers	Subject Code: 20BTEETPC614
		Course Outcomes	<u> </u>
CO1	Explain th	ne architecture, pins & signals, programming model, instruc	ction execution of 8085
	microproc	essor and its interfacing with memory and I/O devices.	
CO2	Describe t	the architecture, modes of operation, memory organization,	interrupts of 8086
	microproc	cessor and its interfacing with 8255 PPI and 8257 DMA con	ntroller
CO3	Explain th	ne concepts of embedded ICs, RISC and CISC processors a	nd 8051 microcontrollers to
	solve simp	ple problems using assembly language programming.	
CO4	Design m	icrocontroller-based interfacing for various applications.	
CO5	Demonstr	ate peripheral interfacing with advanced programming of n	nicroprocessors and
	microcont	rollers for real-time applications.	

					(CO-PC) Map	ping					CO-PS	O Mapı	oing
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	-	-	-	2	2	3	3	-
CO2	3	3	3	3	3	2	1	-	-	-	2	2	3	3	-
CO3	2	2	2	2	1	-	-	-	-	-	1	1	2	3	-
CO4	3	3	3	2	2	1	1	-	-	-	1	1	2	2	-
CO5	3	2	2	1	-	-	-	-	-	-	-	-	1	1	-
Average	2.80	2.60	2.60	2.20	2.25	1.67	1.33	-	-	-	1.50	1.50	2.20	2.40	-
'3'High			'2'	Mode	erate			'1' Lo	DW	l		'-' N	o Corre	lation	
Overall CO	Attair	nment										2.54			
PO	2.37	2.201	2.20	1.862	1.905	1.413	1.126				1.27	1.27	1.862	2.032	
Attainment			1												

Semester:	6TH	Subject Name: Power System Operation & Control	Subject Code: 20BTEETPC614
		Course Outcomes	
CO1	To formulat	te the admittance matrix and evaluate load, their behaviouics.	ur, and transmission line
CO2	To solve po	wer flow problem, determine the losses in the transmission	on system, and decide

	econo	mic ge	enerat	ion scl	hedule	at a si	napsho	ot.								
CO3	To de	termin	e the	econo	mic op	eratin	g sche	dule o	f gene	rators.						
CO4		ntrol &		-	power	syste	m dyna	amics	with c	hange i	n freque	ency in	single a	and mul	ti-area	
CO5	To estimate the critical clearing time for stable power system operation and rotor angle stability analysis.														lity	
	CO-PO Mapping CO-PSO Mapping															
Sl. No	PO1															
CO1	3	3	2	2	2	-	-	-	1	1	-	-	3	2	3	
CO2	3	3	2	2	2	-	-	-	1	1	-	-	3	2	2	
CO3	2	3	3	2	2	-	-	-	1	1	-	-	2	2	2	
CO4	3	2	3	3	3	-	-	-	1	1	-	-	3	2	3	
CO5	3	2	3	2	2	-	-	-	1	1	-	-	3	2	2	
Average	2.8	2.6	2.6	2.2	2.2	-	-	-	1	1	-	-	2.8	2	2.4	
'3'High			'2'	Mode	erate			'1' Lo	ow			'-' N	o Corre	lation		
Overall CO	Attair	nment										2.26				
PO Attainment	2.11	1.96	1.96	1.66	1.66	-	-	-	0.753 33	0.753	-	-	2.11	1.51	1.81	

Department of Electrical Engineering

Semester: 6	TH		Subj	ect Na	me: P	ower	Systen	n Prot	ection	1			ct Code EETPE			
							Co	ourse	Outco	mes					-	
CO1	Analy	ze bala	nced a	and unb	alance	d faults	s and d	ecide c	ircuit b	reaker r	atings.					
CO2	Analyz	ze vario	ous typ	e of re	lay and	d their	use cas	ses in p	ower s	ystem p	rotectio	n.				
CO3	Demo	nstrate	variou	ıs prote	ection s	strategi	es appl	ied for	power	system	protecti	on.				
CO4		elect required protection measures against overcurrent, overvoltage in transmission lines and other power vstem equipment.														
CO5	Explo	xplore the modern trends in relaying like digital ralaying for power system protection.														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	3	3	3	2	2		-	-	-		2	3	3	3	
CO2	3	3	3	3	2	1		-	-	-		2	2	2	3	
CO3	3	2	2	2	2	1		-	-	-		1	3	2	2	
CO4	2	3	3	2	2	1		-	-	-		1	2	2	1	
CO5	3	2	1	2	2	2		-	-	-		2	2	2	3	
Average	2.80	2.60	2.40	2.40	2.00	1.40		-	-	-		1.60	2.40	2.20	2.4	
'3'High	1	I	'2'	Mode	erate	I	I	'1' Lo	OW	l	<u>I</u>	'-' N	o Corre	lation		
Overall CO	Attaiı	nment										2.47				
PO Attainment		2.140	1.97 6	1.976	1.646	1.152						1.317	1.976	1.811	1.976	

Semester: 6TH			Subject Name: HIGH VOLTAGE ENGINEERING										Subject Code: 20BTEETPE606				
			ı				C	ourse	Outco	mes		I					
CO1	Knowledge of generation and measurement of D. C., A.C., & Impulse voltages.																
CO2	Understand the basic physics related to various breakdown processes in solid, liquid and gaseous insulating materials.																
CO3	Knowledge of how over-voltages arise in a power system.																
CO4	Knowledge of protection against these over- voltages.																
CO5	Knowledge of tests on H. V. equipment and on insulating materials, as per the standards.																
	CO-PO Mapping CO-PSO Mappi													ping			
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	3	1	2	-	-	-	-	-	-	-	-	2	1	1		
CO2	2	3	2	2	2	-	-	-	-	-	-	-	3	2	2		
CO3	2	1	2	1	-	-	-	-	-	-	-	-	1	-	1		
CO4	2	2	2	3	2	-	-	-	-	-	-	-	3	1	2		
CO5	1	2	2	2	3	-	-	-	-	-	-	-	2	1	2		
Average	2.00	2.20	1.80	2.00	2.33			-	-	-			2.20	2.20	1.6		
'3'High			'2'	Mode	erate			'1' L	OW	1	I	'-' N	o Corre	lation	<u> </u>		
Overall CO	Attaiı	nment										2.51					
PO Attainment	1.67	1.84	1.51	1.67	1.95	-	-	-	-	-	-	-	1.84	1.84	1.34		

Semester: 67	ГН			ect Na			IUNIC	CATIO	Subject Code: 20BTEETOE605										
		Course Outcomes																	
CO1	Know	the ba	sic of o	commu	nicatio	n syste	ems and	d differ	ent cha	annels.									
CO2	Descri	be the	funda	menta	ls of an	nplitud	e modi	ulation	and de	emodula	ition tec	hniques	i.						
CO3	Articulate performance of angle modulation techniques, pulse modulation schemes and digital transmission of analog signals.																		
CO4	Analyze the performance of AM & FM systems in presence of noise signals																		
CO5	Know	differe	nt digi	ital mo	dulatio	n tech	niques	and its	applic	ations.									
	CO-PO Mapping CO-												CO-PS	-PSO Mapping					
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3				
CO1	3	3	3	3	2	2		-	-	-		2	3	3	3				
CO2	3	3	3	3	2	1		-	-	-		2	2	2	3				
CO3	3	2	2	2	2	1		-	-	-		1	3	2	2				
CO4	2	3	3	2	2	1		-	-	-		1	2	2	1				
CO5	3	2	1	2	2	2		-	-	-		2	2	2	3				
Average	2.80	2.60	2.40	2.40	2.00	1.40		-	-	-		1.60	2.40	2.20	2.4				
'3'High	<u> </u>	1	'2'	Mode	erate	<u> </u>	1	'1' Lo	ow	<u> </u>	<u> </u>	'-' N	o Corre	lation	I				
Overall CO	Overall CO Attainment											2.47							
PO Attainment	2.31	2.14	1.98	1.98	1.65	1.15	0.00	-	-	-	-	1.32	1.98	1.81	1.98				

Semester: 6TH			Subject Name: MICROPROCESSOR & MICROCONTROLLER LABORATORY										Subject Code: 20BTEEPPC609				
	Course Outcomes																
CO1	Unde	Understand the architecture and instruction set of microprocessors and microcontrollers.															
CO2	Deve	Develop assembly language and embedded C programs for microprocessors/microcontrollers.															
CO3	Interface microcontrollers with peripheral devices such as LEDs, motors, sensors, and displays.																
CO4	Imple	Implement real-time applications using microcontrollers in electrical systems.															
CO5	Analyze and debug microcontroller-based systems for automation and control.																
					CO-PSO Mapping												
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	2	1	1	2	1	1	1	1	1	1	2	3	2	1		
CO2	3	2	2	2	3	1	1	1	1	1	1	3	3	3	2		
CO3	3	2	3	2	3	2	2	1	2	2	1	3	3	3	3		
CO4	3	3	3	3	3	2	2	1	2	2	1	3	3	3	3		
CO5	3	3	3	3	3	2	3	1	2	2	2	3	3	3	3		
Average	3	2.4	2.4	2.2	2.8	1.6	1.8	1	1.6	1.6	1.2	2.8	3	2.8	2.4		
'3'High			'2'	Mode	erate		1	'1' Low					'-' No Correlation				

Overall CO	Attaiı	nment										2.52			
PO	2.52	2.01	2.01	1.84	2.35	1.34	1.51	0.84	1.34	1.34	1.008	2.35	2.52	2.35	2.01
Attainment															

Semeste	r: 6th	Subject Name: Power System Lab	Subject Code: 20BTEEPPC610
		Course Outcomes	s
CO1		e transmission parameters of lumped area networking agnetic over current relay.	rk and verify relay characteristic of
CO2	•	rth fault relay operation for unbalanced load and cransient reactance of synchronous machine.	determine direct axis and quadrature
CO3		breakdown potential and dielectric strength of tra- ounted substation.	nsformer oil and know about pole and
CO4		tlab Program for optimal operation electric power limits and for computation of symmetrical and un	
CO5	i. For sim load fre ii. Simulii openin	tlab Program ulation of static response of ALFC loop for TH= equency control problem without and with PI con nk model for evaluating the transient stability by ng the breakers at both ends of the line at 2.5 cycle	atroller using Matlab Simulink. plotting swing curve by simultaneously es and 6.25 cycles after occurrence of
	the fau	alt and also plot the swing curve up to a period of	0.5sec for sustained fault.

	iii. To	find c	lynan	nic res _l	ponse	of 1are	ea load	l frequ	ency c	ontrol p	oroblen	n withou	at and v	vith PI	
	co	ontrolle	er usir	ng Mat	lab Si	mulinl	ζ.								
					(CO-PO) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	3	3	1	-	-	2	1	-	1	2	3	-
CO2	3	3	2	3	2	1	-	-	1	1	-	1	1	3	-
CO3	3 2 1 3 3 1 1 1 - 1												2	1	-
CO4	3	3	3	2	3	2	1	1	2	2	1	2	2	1	-
CO5	1	1	1	1	1	1	1	1	3	3	1	2	2	1	-
Average	2.6	2.2	1.6	2.4	2.4	1.2	1	1	1.8	1.6	1	1.4	1.8	1.8	-
'3'High			'2'	Mode	erate			'1' Lo)W			'-' N	o Corre	lation	
Overall CO	Attaiı	nment										2.19			
PO Attainment	1.906	1.613	1.17	1.76	1.76	0.88	0.733	0.733	1.32	1.17	0.733	1.026	1.32	1.32	-

Semester	: 6ТН	Subject Name: Mini Project-III	Subject Code: 20BTEEPPSI604
		Course Outcomes	1
CO1	Apply Adv	anced Electrical Engineering Concepts	
CO2	Develop Pr	actical Implementation and Troubleshooting Ski	ills
CO3	Enhance Pr	roblem-Solving and Innovation Abilities	
CO4	Strengthen	Teamwork and Project Management Skills	

CO5	Impro	ve Te	chnica	al Con	nmunic	cation	and D	ocume	ntatio	n					
					(CO-PC) Map	ping					CO-PS	O Mapı	oing
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	2	1	1	2	2	2	3	3	2	3
CO2	3	3	3	3	3	2	1	1	2	2	2	3	3	2	3
CO3	3	2	3	3	3	2	1	1	2	2	2	3	3	2	3
CO4	2 2 2 2 2 1 1 3 3 2											2	2	2	
CO5	2	1	2	2	2	1	1	1	3	3	3	2	2	2	2
Average	2.6	2.2	2.6	2.6	2.4	1.8	1	1	2.4	2.4	2.4	2.6	2.6	2	2.6
'3'High	I	I	'2'	Mode	erate			'1' Lo	ow	I	L	'-' N	o Corre	lation	
Overall CO	Attair	nment										2.42			
PO	2.09	1.77	2.09	2.09	1.93	1.45	0.80	0.80	1.93	1.93	1.93	2.09	2.09	1.61	2.09
Attainment															

Semester: 67	ГН		Subject Code: 20BTEEPPSI605
		Course Outcomes	

CO1	Devel	op Re	search	and A	Analyti	ical Sk	tills									
CO2	Enhar	nce Te	chnica	al Con	nmunio	cation	Skills									
СОЗ	Impro	ve Pre	esenta	tion ar	d Pub	lic Spe	eaking	Abilit	ies							
CO4	Streng	gthen (Critica	ıl Thin	king a	nd Dis	scussio	on Skil	ls							
CO5	Enhar	Enhance Report Writing and Documentation Skills														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														PSO3	
CO1	3	3	2	2	2	2	-	2	2	1	3	3	3	2		
CO2	3	3	2	3	2	2	-	1	2	2	1	3	3	3	2	
CO3	2	2	2	2	2	2	-	1	2	3	2	2	2	2	2	
CO4	1	1	1	1	2	1	-	1	3	3	2	2	2	2	1	
CO5	1	1	1	1	1	1	-	1	3	3	2	2	2	2	1	
Average	2	2	1.6	1.8	1.8	1.6	-	1	2.4	2.6	1.6	2.4	2.4	2.4	1.6	
'3'High			'2'	Mode	rate			'1' Lo	OW			'-' N	o Corre	lation		
Overall CO	Attair	nment										2.45				
PO Attainment	1.63	1.63	1.30	1.47	1.47	1.30	-	0.816	1.96	2.12	1.30	1.96	1.96	1.96	1.30	

Department of Electrical Engineering

Semester: 6	TH		Subj	ect Na	me: E	Employ	yabilit	ty Skil	l-IV			_	ct Code EEPPC		
			1				C	ourse	Outco	mes		1			
CO1	Use g	ramma	ar and	vocat	oulary	in app	ropria	te con	text						
CO2	Comp	rehend	d the	given t	exts a	nd res _l	pond a	pprop	riately	•					
CO3	Comr	nunica	ite coi	nfident	ly in v	arious	conte	exts an	d diffe	rent cu	ltures.				
CO4	_	ire bas	-	ficiend	ey in E	English	inclu	ding re	eading	and lis	tening o	comprel	nension	, writing	g and
CO5	Unde	Understand the nuances of the placement procedure and perform at placement tests effectively													
	CO-PO Mapping CO-PSO Map													ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2
CO2	-	-	-	-	-	2	1	3	3	3	2	3	-	-	2
CO3	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2
CO4	-	-	-	-	-	-	2	2	3	3	2	2	-	-	2
CO5	-	-	-	-	-	-	2	3	3	3	2	2	-	-	2
Average	-	-	-	-	-	2.00	1.80	2.80	3.00	3.00	2.00	2.60	-	-	2.00
'3'High			'2'	Mode	erate		1	'1' L	ow			'-' N	o Corre	lation	<u> </u>
Overall CO	Attair	nment										2.54			
PO Attainment	-	-	-	-	-	1.69	1.52	2.37	2.54	2.54	1.69	2.20	-	-	1.69

Semester: 7	ГН		Subj	ect Na	me: A	dvan	ced Co	ontrol	Systei	m		•	ct Code EETPC			
			I				Co	ourse	Outco	mes		<u>I</u>				
CO1		ow ab							-	ms and	obtain	pulse-ti	ransfer 1	function	of	
CO2	To ob	tain st	ability	y of lin	ear, di	iscrete	syster	n and	state s	pace rep	presenta	ation.				
CO3						-		_					echniqu contr			
CO4	To fin	Γο find stability of non-linear control system involving Liapunov's and Popov's stability criterion Γο emerge as a member and leader in a team and to manage projects in multidisciplinary														
	enviro	_	ts inv	olving							-		discipling d	_	ıg	
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	3	2	1	1	-	1	1	1	-	-	3	-	-	
CO2	2	3	3	2	2	1	2	2	2	1	-	-	3	-	-	
CO3	1	3	3	3	1	2	1	-	2	2	-	-	3	-	-	
CO4	1	2	2	2	1	1	3	3	3	2	-	-	3	-	-	
CO5	2	1	1	2	1	1	1	-	1	1	-	-	2	-	-	
Average	1.80	2.20	2.40	2.20	1.20	1.20	1.75	2.00	1.80	1.40	-	-	2.80	-	-	
'3'High	1	1	'2'	Mode	erate	1	1	'1' Lo	ow	1		'-' N	o Corre	lation		
Overall CO	Attair	nment										2.75				
PO											_	_		_	_	
Attainment	1.65	2.016	2.2	2.016	1.1	1.1	1.604	1.833	1.65	1.283			2.5666			

Semester:	7TH		Subj	ect Na	me: I	HVDC	& FA	CTS				•	ct Code EETPC		
			1				C	ourse	Outco	mes		ı			
CO1	Explai	n HVD	C Trans	smissio	n Syste	ems an	d conv	erter ci	ircuits.						
CO2	Exami	ne and	analy	se diffe	erent co	onverte	er circu	its.							
CO3	Design	n and a	nalyse	variou	ıs conti	ol tech	nniques	for H\	/DC co	nverters	5.				
CO4	Evalua	ate har	monic	s in HV	DC trai	nsmissi	on syst	em an	d their	effect					
CO5	Devel	Develop harmonic suspension and protection systems for HVDC transmission. CO-PO Mapping CO-PSO Mapping													
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2		-	-	-		2	3	3	3
CO2	3	3	3	3	2	1		-	-	-		1	2	2	2
CO3	3	3	2	2	2	1		-	-	-		1	3	1	2
CO4	2	3	3	2	1	1		-	-	-		1	2	2	1
CO5	2	2	3	3	3	2		-	-	-		2	2	2	3
Average	2.60	2.80	2.80	2.60	2.20	1.40		-	-	-		1.40	2.40	2.00	2.2
'3'High	l	1	'2'	Mode	erate	<u> </u>	1	'1' L	ow	<u> </u>	<u> </u>	'-' N	o Corre	lation	<u> </u>
Overall Co	Overall CO Attainment											2.51			·
PO	2.175	2.342	2.34	2.175	1.84	1.17						1.17	2.008	1.673	1.84

Attainment		2						

Semester:	7TH		Subj	ect Na	ıme: E	CLEC	FRIC	DRIV	ES			_	ct Code EETPC		
			I				C	ourse	Outco	mes					
CO1	To un	derstan	d the	operat	ion of <i>i</i>	AC-DC	Conve	ter Co	ntrolle	d DC Mc	tor Driv	es			
CO2	To un	derstan	d the	operat	ion of (Choppe	er Cont	rolled	DC Mo	tor Driv	es				
CO3		derstan nt Sour		•		_			ter Fe	d Induct	ion Mot	or Drive	s & the	operatio	n of
CO4	To un	To understand the Rotor Side Control of Induction Motor Drives													
CO5	To Ide	ntify su	uitable	form	of elect	rical d	rives sy	/stem i	n Indus	stry					
					(CO-PO) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	2	-	-	-	-	2	3	3	2	3
CO2	3	3	2	2	3	2	-	-	-	-	2	3	3	2	3
CO3	3	3	3	2	3	2	-	-	-	-	2	3	3	2	3
CO4	3	3	2	2	3	2	-	-	-	-	2	3	3	2	3

CO5	3	2	3	2	3	2	-	-	-	-	3	3	3	3	3
Average	3.00	2.80	2.40	2.00	3.00	2.00	-	-	-	-	2.20	2.20	3.00	2.20	3
'3'High		I	'2'	Mode	erate		'1' Lo	ow	L	L	'-' No	o Corre	lation		
'3'High '2' Moderate '1' Low '-' No Correlation Overall CO Attainment 2.51															
PO Attainment	2.51	2.34	2.01	1.67	2.51	1.67	-	-	-	-	1.84	1.84	2.51	1.84	2.51

Semester	: 7TH	Subject Name: Power Station Engineering	Subject Code: 20BTEETPE712
		Course Outcomes	
CO1	understar	nding power plant operation, analysing power plant systems	S
CO2		and analyse the working principles of different types of pow tric power station	ver plants, such as steam, nuclear, and
CO3		e economic and safety impacts of power plants Understand ated to Prediction of Load Connected Load, Maximum Dema	· ·
CO4	Analyse th	ne layout of power plants Cost of Electrical Energy	
CO5		nd the working of the systems that make up a power plant 8 s that can occur in a power system	& understand the abnormal
		CO-PO Mapping	CO-PSO Mapping

Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	-	-	-	2	2	3	3	3
CO2	3	3	3	3	3	2	1	-	-	-	2	2	3	3	3
CO3	2	2	2	2	1	2	2	-	-	-	1	1	2	3	2
CO4	3	3	3	2	2	1	1	-	-	-	1	1	2	2	2
CO5	3	2	2	1	3	2	2	-	-	-	-	2	2	2	2
Average	2.80	2.60	2.60	2.20	2.40	1.80	1.60	-	-	-	1.50	2.60	2.40	2.60	2.4
'3'High	I		'2'	Mode	rate		I	'1' Lo	ow	I		'-' N	o Corre	lation	
Overall CO	Attair	ment										2.51			
PO Attainment	2.34	2.18	2.18	1.84	2.01	1.51	1.34	-	-	-	1.26	2.18	2.01	2.18	2.01

Semester:	7 TH	Subject Name: INTERNET OF THINGS	Subject Code: 20BTEETOE708
		Course Outcomes	
CO1	Understandin models, and	ng IoT Fundamentals: Students will gain knowledge of IoAPIs.	T functional blocks, communication
CO2	1	T Enabling Technologies: The course covers technologies uting, Big Data Analytics, Communication Protocols, an	
CO3		Domain-Specific IoT Applications: Students will learn to home automation, including smart lighting, appliances,	

	detect	ors.													
CO4		erry Pi	•										_	evices lik language	
CO5		_					•							involve eir proje	
					(CO-PC) Map	ping					CO-PS	O Map	ping
Sl. No	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														
CO1	3 2 2 1 2 1 - 2 3 2 1													1	
CO2	3 2 3 2 3 - 1 - 1 - 2										3	3	2		
CO3	2	2	3	2	3	1	1	_	2	2	2	3	2	3	3
CO4	3	2	3	2	3	-	-	-	2	2	2	2	3	2	3
CO5	2	3	3	3	3	1	1	1	3	3	3	3	3	3	3
Average	2.60	2.20	2.80	2.00	2.80	1.00	1.00	1	2.33	1.8	2.33	2.40	2.80	2.80	2.4
'3'High			'2'	Mode	erate			'1' Lo	DW			'-' N	o Corre	lation	
Overall CO	Attair	nment										2.51			
PO Attainment	2.18	1.84	2.34	1.67	2.34	0.84	0.84	0.84	1.95	1.51	1.95	2.01	2.34	2.34	2.01

Semester: 7	ГН	Subject Name: ENTREPRENEURSHIP	Subject Code:
		DEVELOPMENT	20BTEETHS706
		Course Outcomes	

CO1		the va		conce	epts re	lated to	o entre	prenei	ırship	and inti	caprene	urship a	and kno	w their		
CO2	Able	to iden	tify o	pportu	inities	in the	marke	t acco	rding t	to the er	ntrepren	eurial e	environ	ments.		
CO3	Get kr	nowled	ge abo	out the	capita	l flow a	ind its	manage	ement	to start	up and ı	un a bu	siness			
CO4	Identi	fy the	short	falls ar	nd cau	ses of	busine	ss fail	ures.							
CO5	Get knowledge about different policies made by Government and other regulatory authorities.															
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO													PSO3		
CO1	-	1	_	1	-	-	-	-	-	1	1	3	3	1	1	
CO2	1	2	2	3	3	-	-	-	-	1	2	3	3	2	3	
CO3	-	2	-	1	3	-	-	-	-	1	3	3	1	2	2	
CO4	1	2	2	3	3	-	-	-	-	1	3	3	3	2	3	
CO5	-	2	-	-	-	-	-	-	-	1	3	3	3	2	2	
Average	1	1.8	2	2	3	-	-	-	-	1	2.4	3	2.6	1.8	2.4	
'3'High			'2'	Mode	erate			'1' Lo)W			'-' No	o Corre	lation		
Overall CO	Attaiı	nment										2.42				
PO Attainment	0.80	1.45	1.61	1.61	2.42	-	-	-	-	0.80	1.93	2.42	2.09	1.45	1.93	

Semester: 7	TH		Subj	ect Na	me: E	LECTI	RIC D	RIVES	5-Lab				ct Code EEPPC			
							Co	ourse	Outco	mes		I				
CO1	Stude	nts wi	ll dem	onstra	ite the	speed	contro	l meth	ods of	f AC an	nd DC n	notors.				
CO2	Stude		ll illus	strate t	he ope	eration	and a	nalysis	of dif	ferent o	converte	ers conc	cerning	control		
CO3		Students will be able to differentiate and test firing circuits in single and three-phase controlled bridge converters. Students will examine the operation of three-phase fully and half-controlled converters for														
CO4		Students will examine the operation of three-phase fully and half-controlled converters for different types of loads experimentally. Students will be capable of setting up control strategies to synthesize voltages in both DC and AC motor drives.														
CO5																
	CO-PO Mapping CO-PSO Mapping															
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	2	2	2	_	_	_	2	1	_	2	3	2	3	
CO2	3	3	3	3	2	_	_	_	2	1	_	2	3	2	3	
CO3	3	3	2	3	2	_	_	_	2	1	_	2	3	2	3	
CO4	3	3	3	3	2	_	_	_	2	1	_	2	3	2	3	
CO5	3	3	3	2	3	_	_	_	2	1	_	2	3	2	3	
Average	3	2.8	2.6	2.6	2.2	-	-	-	2	1	-	2	3	2	3	
'3'High	1		'2'	Mode	erate	ı	1	'1' Lo	ow	ı	1	'-' N	o Corre	lation	<u> </u>	
Overall CO	Attair	nment										2.18				
PO	2.18	2.03	1.89	1.89	1.60	-	-	-	1.45	0.73	-	1.45	2.18	1.45	2.18	
Attainment																

Semester: 7	ГН		Subj	ect Na	me: N	Iinor	PRO	JEC	T			Subject 20BT	t Code EEPP		
			I				Co	ourse	Outco	mes					
CO1	Apply	Elect	rical I	Engine	ering l	Funda	mental	s to Pı	actica	l Proble	ems				
CO2	Devel	op Ha	nds-o	n Tech	nical	and Aı	nalytic	al Skil	ls						
CO3	Enhar	nce Pro	oblem	-Solvi	ng and	Innov	ation	Abiliti	es						
CO4	Impro	mprove Teamwork and Project Management Skills													
CO5	Streng	trengthen Technical Documentation and Presentation Skills													
		CO-PSO Mapping CO-PSO Mapping													
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO													
CO1	3	3	3	3	2	2	1	1	2	2	2	3	3	2	3
CO2	3	3	3	3	3	2	1	1	2	2	2	3	3	2	3
CO3	3	2	3	3	3	2	1	1	2	2	2	3	3	2	3
CO4	2	2	2	2	3	2	1	1	3	3	3	2	2	2	2
CO5	1	1	2	2	2	1	1	1	3	3	3	2	2	2	2
Average	2.4	2.2	2.6	2.6	2.6	1.8	1	1	2.4	2.4	2.4	2.6	2.6	2	2.6
'3'High	l		'2'	Mode	erate			'1' Lo)W			'-' No	o Corre	lation	
Overall CO	Attair	ment										2.21			
PO Attainment	1.768	1.62	1.91 5	1.915	1.915	1.326	0.736	0.736	1.768	1.768	1.768	1.915	1.915	1.473	1.915

Semester:	7TH		Subj	ect Na	me: S	emina	ır -II					•	et Code EEPPSI		
			<u> </u>				Co	ourse	Outco	mes					
CO1	Enhai	nce Te	chnica	al Kno	wledg	e in E	lectrica	al Eng	ineerir	ng					
CO2	Devel	lop Eff	fective	e Prese	entatio	n and	Comm	unicat	ion Sk	xills					
CO3	Impro	ve Re	search	and A	Analyt	ical Al	bilities								
CO4	Streng	Strengthen Critical Thinking and Discussion Skills Enhance Report Writing and Documentation Skills													
CO5	Enhai														
					(CO-PC) Map	ping					CO-PS	O Mapp	oing
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	2	-	1	2	2	1	3	3	3	2
CO2	3	3	2	3	2	2	-	1	2	2	1	3	3	3	2
CO3	2	2	2	2	2	2	-	1	2	3	2	2	2	2	2
CO4	1	1	1	1	2	1	-	1	3	3	2	2	2	2	1
CO5	1	1	1	1	1	1	-	1	3	3	2	2	2	2	1
Average	2	2	1.6	1.8	1.8	1.6	-	1	2.4	2.6	1.6	2.4	2.4	2.4	1.6
'3'High	1	<u> </u>	'2'	Mode	erate	'1' Lo	ow	1	I	'-' N	o Corre	lation			
Overall Co) Attaiı	nment							2.45						

PO	1.63	1.63	1.30	1.47	1.47	1.30	-	0.816	1.96	2.12	1.30	1.96	1.96	1.96	1.30
Attainment															

Semester: 7	TH		Subj	ect Na	me: C	comp	rehe	ensiv	e Vi	va		Subjec 20BTE			
							C	ourse	Outco	mes					
CO1	Demo		e a tho	orough	under	rstandi	ng of	fundan	nental	and adv	vanced	electric	al engir	neering	
CO2	Apply theoretical knowledge to analyze and solve practical engineering problems											lems			
СОЗ	Comr	Communicate technical knowledge effectively in oral and written formats.													
CO4	Exhibit confidence in explaining engineering concepts and their applications.														
CO5	Deve	lop pro	blem	-solvin	g and	critica	l-thinl	king al	oilities	throug	h struct	ured dis	scussion	ns.	
					(CO-PO) Map	ping					CO-PS	O Mapp	oing
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3 3 2 2 2 2 2 2 1 1												3	3	-
CO2	3	3	3	3	2	-	-	2	2	2	1	1	3	3	-
CO3	2	2	2	2	2	-	-	2	2	3	1	1	2	3	-

CO4	2	2	2	2	2	-	-	2	3	3	1	1	2	3	-			
CO5	3	3	3	3	2	-	-	2	2	2	1	1	3	3	-			
Average	2.6	2.6	2.4	2.4	2	-		2	2.2	2.4	1	1	2.6	3	-			
'3'High '2' Moderate '1' L												'-' No Correlation						
Overall CO	Attair	ment										2.50						
PO	2.16	2.16	2	2	1.66	-	-	1.66	1.83	2	0.833	0.833	2.16	2.5	-			
Attainment																		

Semester: 8	втн		Subj	ect Na	me: (Grand	d Viv	a				•	ubject Code: DBTEEPS1809				
							C	ourse	Outco	mes							
CO1	Demo	nstrate	e fund	ament	al and	advar	iced ki	nowled	lge in l	Electric	al Engi	neering	·				
CO2	Analy	Analyze and solve complex electrical engineering problems															
CO3	Apply	Apply modern tools, software, and methodologies in electrical engineering analysis.															
CO4	Exhib	it prof	essior	al eth	ics, te	amwoi	rk, and	respo	nsibili	ty in tec	chnical	discuss	ions.				
CO5	Comr	nunica	te effe	ectivel	y, pre	senting	g conc	epts ar	d tech	nical so	olutions	clearly					
	CO-PO Mapping											CO-PSO Mapping					
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		

CO1	3	2	2	2	2	1	1	1	1	2	1	2	3	2	2					
CO2	3	3	2	3	2	1	1	1	1	1	1	2	3	3	2					
CO3	3	2	2	3	3	1	1	1	1	1	1	2	3	2	3					
CO4	2	1	1	1	1	2	1	3	3	2	1	2	2	3	2					
CO5	2	1	1	1	1	1	1	2	3	3	2	2	2	3	2					
Average	2.6	1.8	1.6	2	1.8	1.2	1	1.6	1.8	1.8	1.2	2	2.6	2.6	2.2					
'3'High	l	I.	'2'	Mode	erate	I.		'1' Lo	1.8 1.8 1.2 2 2.6 2.6 2.											
Overall CO	Attair	nment										2.51			2 3 3 2 3 2 6 2.2 m					
PO	2.18	1.51	1.34	1.68	1.51	1.008	0.84	1.34	1.51	1.51	1.008	1.68	2.18	2.18	1.84					
Attainment																				

Semester: 8	TH	Subject Name: Major PROJECT	Subject Code:						
			20BTEEPSI810						
		Course Outcomes	l						
CO1	Demonstrate an in-depth understanding of the relevance, scope, and objectives of the sele project topic within the domain of Electrical Engineering.								
CO2		comprehensive literature review and identify applications of the project.	or knowledge gaps to						

CO3	Apply appropriate research methodology, tools, and engineering techniques to design, develop, and implement the proposed solution.														op, and
CO4	Analyze and interpret the quality of results using appropriate validation methods, tools, and performance indicators.														
CO5	Present findings in the form of a structured technical report and defend the work confidently through oral presentation and response to queries.														,
	CO-PO Mapping CO-PSO Mappin														oing
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	-	1	1	1	1	2	2	-	1	3	2	2
CO2	3	2	2	2	-	2	1	2	-	1	-	2	3	3	2
CO3	3	3	3	3	3	1	2	-	2	2	2	3	3	2	3
CO4	3	3	3	3	2	-	-	-	1	1	1	3	3	3	3
CO5	2	1	2	-	-	-	-	1	3	3	2	1	2	2	2
Average	2.80	2.20	2.40	2.67	2.00	1.33	1.33	1.33	2.00	1.80	1.67	2.00	2.80	2.40	2.40
'3'High			'2'	Mode	erate			'1' Lo	ow			'-' N	o Corre	lation	
Overall CO	Attair	nment										2.44			
PO Attainment	2.27	1.79	1.73	2.17	1.62	1.08	1.08	1.08	1.62	1.46	1.35	1.62	2.27	1.95	1.95

Semester: 87	ГН	_	Subject Code: 20BTEEPSI811
		Course Outcomes	

CO1	Apply	Theo	retica	l Knov	wledge	to Pra	actical	Appli	cations	S					
CO2	Devel	op Ha	nds-o	n Tecl	nnical	Skills									
CO3	Enhar	nce Pro	oblem	-Solvi	ng and	l Anal	ytical A	Abiliti	es						
CO4	Improve Professional Communication and Teamwork														
CO5	Understand Industry Standards, Ethics, and Safety Practices														
	CO-PO Mapping CO-PSO Mapping														ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1	2	1	2	3	2	2	1	2	1	2	2
CO2	3	2	2	2	3	1	1	2	2	1	2	2	1	3	2
CO3	3	2	2	3	3	1	1	2	2	1	2	2	1	2	3
CO4	2	1	1	1	1	1	1	2	3	3	2	2	1	3	2
CO5	2	2	2	2	2	1	1	2	2	2	3	3	1	3	2
Average	2.4	1.6	1.6	1.8	2.2	1	1.2	2.2	2.2	1.8	2	2.2	1	2.6	2.2
'3'High	•		'2'	Mode	erate			'1' Lo	ow	1	•	'-' N	o Corre	lation	
Overall CO	Attair	ıment										2.45			
PO Attainment		1.30	1.30	1.47	1.79	0.81	0.98	1.79	1.79	1.47	1.633	1.79	0.81	2.12	1.79